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Theories of the constitution of bodies suppose them either to be continuous, and homo
geneous, or to be composed of a finite number of distinct particles or molecules.

In certain applications of mathematics to physical questions, it is convenient to 
suppose bodies homogeneous in order to make the quantity of matter in each differential 
element a function of the coordinates, but I  am not aware that any theory of this kind 
has been proposed to account for the different properties of bodies. Indeed the pro
perties of a body supposed to be a uniform plenum may be affirmed dogmatically, but 
cannot be explained mathematically.

Molecular theories suppose that all bodies, even when they appear to our senses 
homogeneous, consist of a multitude of particles, or small parts the mechanical rela
tions of which constitute the properties of the bodies. Those theories which suppose 
that the molecules are at rest relative to the body may be called statical theories, and 
those which suppose the molecules to be in motion, even while the body is apparently 
at rest, may be called dynamical theories.

If  we adopt a statical theory, and suppose the molecules of a body kept at rest in their 
positions of equilibrium by the action of forces in the directions of the lines joining their 
centres, we may determine the mechanical properties of a body so constructed, if distorted 
so that the displacement of each molecule is a function of its coordinates when in equi
librium. I t  appears from the mathematical theory of bodies of this kind, that the forces 
called into play by a small change of form must always bear a fixed proportion to those 
excited by a small change of volume.

Now we know that in fluids the elasticity of form is evanescent, while that of volume 
is considerable. Hence such theories will not apply to fluids. In solid bodies the 
elasticity of form appears in many cases to be smaller in proportion to that of volume 
than the theory gives*, so that we are forced to give up the theory of molecules whose 
displacements are functions of their coordinates when at rest, even in the case of solid 
bodies.

The theory of moving molecules, on the other hand, is not open to these objections. 
The mathematical difficulties in applying the theory are considerable, and till they are 
surmounted we cannot fully decide on the applicability of the theory. We are able, 
however, to explain a great variety of phenomena by the dynamical theory which have 
not been hitherto explained otherwise.

The dynamical theory supposes that the molecules of solid bodies oscillate about their
* [In glass, according to Dr. E verett’s second series of experiments (1866), the ratio of the elasticity of form 

to that of volume is greater than that given by the theory. In brass and steel it is less.—March 7,1867.]
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5 0  MR. CLERK MAXWELL OX THE DYNAMICAL THEORY OF OASES.

positions of equilibrium, but do not travel from one position to another in the body. 
In fluids the molecules are supposed to be constantly moving into new relative positions, 
so that the same molecule may travel from one part of the fluid to any other part. In 
liquids the molecules are supposed to be always under the action of the forces due to 
neighbouring molecules throughout their course, but in gases the greater part of the 
path of each molecule is supposed to be sensibly rectilinear and beyond the sphere of 
sensible action of the neighbouring molecules.

I propose in this paper to apply this theory to the explanation of various properties 
of gases, and to show that, besides accounting for the relations of pressure, density, and 
temperature in a single gas, it affords a mechanical explanation of the known chemical 
relation between the density of a gas and its equivalent weight, commonly called the 
Law of Equivalent Volumes. I t also explains the diffusion of one gas through another, 
the internal friction of a gas, and the conduction of heat through gases.

The opinion that the observed properties of visible bodies apparently at rest are due 
to the action of invisible molecules in rapid motion is to be found in L ucretius. In the 
exposition which he gives of the theories of D emocritus as modified by E picurus, he 
describes the invisible atoms as all moving downwards with equal velocities, which, at 
quite uncertain times and places, suffer an imperceptible change, just enough to allow 
of occasional collisions taking place between the atoms. These atoms he supposes to 
set small bodies in motion by an action of which we may form some conception by 
looking at the motes in a sunbeam. The language of L ucretius must of course be 
interpreted according to the physical ideas of his age, but we need not wonder that it 
suggested to L e Sage the fundamental conception of his theory of gases, as well as his 
doctrine of ultramundane corpuscles.

Professor C lausius, to whom we owe the most extensive developments of the dynamical 
theory of gases, has given * a list of authors who have adopted or given countenance to 
any theory of invisible particles in motion. Of these, D aniel B ernoulli, in the tenth 
section of his ‘ Hydrodynamics,’ distinctly explains the pressure of air by the impact of 
its particles on the sides of the vessel containing it.

C lausius also mentions a book entitled “Deux Traites de Physique Mecanique, publies 
par P ierre  P revost, comme simple Editeur du premier et comme Auteur du second,” 
Geneve et Paris, 1818. Ih e  first memoir is by G. L e Sage , wrho explains gravity by 
the impact of “ ultramundane corpuscles ” on bodies. These corpuscles also set in 
motion the particles of light and various aethereal media, which in their turn act on the 
molecules of gases and keep up their motions. His theory of impact is faulty, but his 
explanation of the expansive force of gases is essentially the same as in the dynamical 
theoiy as it now stands. The second memoir, by P revost, contains new applications of 
the principles of L e Sage to gases and to light. A more extensive application of the 
theoiy of moving molecules was made by H erapatii j \  His theory of the collisions of

* I>0GGEND0RFP’s ‘ Annalen,’ Jan. 1862. Translated by G. C. F oster, B.A., Phil. Mag. June 1862.
t  Mathematical Physics, &c., by J ohn H erapath, Esq. 2 vols. London : Whittaker & Co., and Herapath’s 

Railway Journal Office, 1847.
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MB. CLERK MAXWELL ON THE DYNAMICAL THEOBY OE GASES. 51

perfectly hard bodies, such as he supposes the molecules to be, is faulty, inasmuch as it 
makes the result of impact depend on the absolute motion of the bodies, so that by 
experiments on such hard bodies (if we could get them) we might determine the absolute 
direction and velocity of the motion of the earth *. This author, however, has applied 
his theory to the numerical results of experiment in many cases, and his speculations are 
always ingenious, and often throw much real light on the questions treated. In parti
cular, the theory of temperature and pressure in gases and the theory of diffusion are 
clearly pointed out.

Dr. J oule f  has also explained the pressure of gases by the impact of their molecules, 
and has calculated the velocity which they must have in order to produce the pressure 
observed in particular gases.

It is to Professor Clausius, of Zurich, that we owe the most complete dynamical 
theory of gases. His other researches on the general dynamical theory of heat are well 
known, and his memoirs “ On the kind of Motion which we call Heat,” are a complete 
exposition of the molecular theory adopted in this paper. After reading his investiga
tion J  of the distance described by each molecule between successive collisions, I  pub
lished some propositions § on the motions and collisions of perfectly elastic spheres, and 
deduced several properties of gases, especially the law of equivalent volumes, and the 
nature of gaseous friction. I  also gave a theory of diffusion of gases, which I  now 
know to be erroneous, and there were several errors in my theory of the conduction 
of heat in gases which M. Clausius has pointed out in an elaborate memoir on that 
subject ||.

M. O. E. Meter1 has also investigated the theory of internal friction on the hypo
thesis of hard elastic molecules.

In  the present paper I  propose to consider the molecules of a gas, not as elastic spheres 
of definite radius, but as small bodies or groups of smaller molecules repelling one 
another with a force whose direction always passes very nearly through the centres of 
gravity of the molecules, and whose magnitude is represented very nearly by some 
function of the distance of the centres of gravity. I  have made this modification of the 
theory in consequence of the results of my experiments on the viscosity of air at different 
temperatures, and I  have deduced from these experiments that the repulsion is inversely 
as the fifth  power of the distance.

If  we suppose an imaginary plane drawn through a vessel containing a great number 
of such molecules in motion, then a great many molecules will cross the plane in either 
direction. The excess of the mass of those which traverse the plane in the positive * * * §

* Mathematical Physics, &c., p. 134.
t  Some Remarks on Heat and the Constitution of Elastic Fluids, Oct. 3,1848.

t  Phil. Mag. Feh. 1859.
§ Illustrations of the Dynamical Theory of Gases, Phil. Mag. 1860, January and July.
II P oggendorff, Jan. 1862; P h il. Mag. June 1862.
IT Leber die innere Reibung der Gase (P oggendorff, vol. cxxv . 1865).
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52 ME. CLEEK M AXW ELL ON THE DYNAM ICAL THEOEY OF OASES.

direction over that of those which traverse it in the negative direction, gives a measure 
of the flow of gas through the plane in the positive direction.

I f  the plane be made to move with such a velocity tha t there is no excess of flow of 
molecules in one direction through it, then the velocity of the plane is the mean velocity 
of the gas resolved normal to the plane.

There will still be molecules moving in both directions through the plane, and carry
ing with them a certain amount of momentum into the portion of gas which lies on the 
other side of the plane.

The quantity of momentum thus communicated to the gas on the other side of the 
plane during a unit of time is a measure of the force exerted on this gas by the rest. 
This force is called the pressure of the gas.

I f  the velocities of the molecules moving in different directions were independent of 
one another, then the pressure at any point of the gas need not be the same in all direc
tions, and the pressure between two portions of gas separated by a plane need not be 
perpendicular to that plane. Hence, to account for the observed equality of pressure in 
all directions, we must suppose some cause equalizing the motion in all directions. 
This we find in the deflection of the path of one particle by another when they come near 
one another. Since, however, this equalization of motion is not instantaneous, the pres
sures in all directions are perfectly equalized only in the case of a gas a t rest, bu t when 
the gas is in a state of motion, the want of perfect equality in the pressures gives rise to 
the phenomena of viscosity or internal friction. The phenomena of viscosity in all 
bodies may be described, independently of hypothesis, as follow s:—

A distortion or strain of some kind, which we may call S, is produced in the body by 
displacement. A state of stress or elastic force which we may call F  is thus excited. 
The relation between the stress and the strain may be w ritten F = E S , where E  is the 
coefficient of elasticity for tha t particular kind of strain. In  a solid body free from vis
cosity, F  will remain = E S , and

— = F  — .dt dt
If, however, the body is viscous, F  will not remain constant, b u t will tend to disappear 
at a rate depending on the value of F, and on the nature of the body. I f  we suppose 
this rate proportional to F ,- the equation may be w ritten

dF dS F
dt dtT ’ 

which will indicate the actual phenomena in an empirical nptanner. For if  S be constant,

F=ES<fT*, *

showing tha t F  gradually disappears, so tha t if  the body is left to itself it  gradually
loses any internal stress, and the pressures are finally distributed as in a fluid at rest. 

rfS
^  df is constant, that is, if there is a steady motion of the body which continually
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MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OE GASES. 53

increases the displacement,
/7S *

F = E T ^  +  C<T*,

showing that F tends to a constant value depending on the rate of displacement. The 
quantity ET, by which the rate of displacement must be multiplied to get the force, may 
be called the coefficient of viscosity. I t  is the product of a coefficient of elasticity, E, 
and a time T, which may be called the “ time of relaxation ” of the elastic force. In 
mobile fluids T is a very small fraction of a second, and E is not easily determined experi
mentally. In viscous solids T may be several hours or days, and then E is easily mea
sured. I t  is possible that in some bodies T may be a function of F, and this would 
account for the gradual untwisting of wires after being twisted beyond the limit of per
fect elasticity. For if  T diminishes as F  increases, the parts of the wire furthest from 
the axis will yield more rapidly than the parts near the axis during the twisting process, 
and when the twisting force is removed, the wire will at first untwist till there is equi
librium between the stresses in the inner and outer portions. These stresses will then 
undergo a gradual relaxation; but since the actual value of the stress is greater in the 
outer layers, it will have a more rapid rate of relaxation, so that the wire will go 
on gradually untwisting for some hours or days, owing to the stress on the interior 
portions maintaining itself longer than that of the outer parts. This phenomenon 
was observed by W eber in silk fibres, by K ohlrausch in glass fibres, and by myself in 
steel wires.

In the case of a collection of moving molecules such as we suppose a gas to be, there 
is also a resistance to change of form, constituting what may be called the linear elasti
city, or “ rigidity ” of the gas, but this resistance gives way and diminishes at a rate de
pending on the amount of the force and on the nature of the gas.

Suppose the molecules to be confined in a rectangular vessel with perfectly elastic 
sides, and that they have no action on one another, so that they never strike one another, 
or cause each other to deviate from their rectilinear paths. Then it can easily be shown 
that the pressures on the sides of the vessel due to the impacts of the molecules are per
fectly independent of each other, so that the mass of moving molecules will behave, not 
like a fluid, but like an elastic solid. Now suppose the pressures at first equal in the 
three directions perpendicular to the sides, and let the dimensions a, c of the vessel 
be altered by small quantities, la, lb, le.

Then if the original pressure in the direction of a was j), it will become

showing that in this case there is a “ longitudinal ” elasticity of form of which the coeffi
cient is 2 p .The coefficient of “ Rigidity ” is therefore = p .

»r if there is no change of volume,

P
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54 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OE OASES.

This rigidity, however, cannot be directly observed, because the molecules continually 
deflect each other from their rectilinear courses, and so equalize the pressure in all direc
tions. The rate at which this equalization takes place is great, but not infinite; and 
therefore there remains a certain inequality of pressure which constitutes the pheno
menon of viscosity.

I have found by experiment that the coefficient of viscosity in a given gas is indepen
dent of the density, and proportional to the absolute temperature, so that if ET be the

viscosity, ET cc ^
But E = n , therefore T, the time of relaxation, varies inversely as the density and is 

independent of the temperature. Hence the number of collisions producing a given de
flection which take place in unit of time is independent of the temperature, that is, of the 
velocity of the molecules, and is proportional to the number of molecules in unit of 
volume. I f  we suppose the molecules hard elastic bodies, the number of collisions of a 
given kind will be proportional to the velocity, but if we suppose them centres of force, 
the angle of deflection will be smaller when the velocity is greater; and if the force is 
inversely as the fifth power of the distance, the number of deflections of a given kind will 
be independent of the velocity. Hence I  have adopted this law in making my calcu
lations.

The effect of the mutual action of the molecules is not only to equalize the pressure 
in all directions, but, when molecules of different kinds are present, to communicate 
motion from the one kind to the other. I  formerly showed that the final result in the 
case of hard elastic bodies is to cause the average viva of a molecule to be the same
for all the different kinds of molecules. Now the pressure due to each molecule is pro
portional to its vis viva, hence the whole pressure due to a given number of molecules 
in a given volume will be the same whatever the mass of the molecules, provided the 
molecules of different kinds are permitted freely to communicate motion to each other.

W hen the flow of vis viva from the one kind of molecules to the other is zero, the 
temperature is said to be the same. Hence equal volumes of different gases at equal 
pressures and temperatures contain equal numbers of molecules.

This result of the dynamical theory affords the explanation of the “ law of equivalent 
volumes ” in gases.

W e shall see that this result is true in the case of molecules acting as centres of force. 
A law of the same general character is probably to be found connecting the tempera- 
ratures of liquid and solid bodies with the energy possessed by their molecules, although 
our ignorance of the nature of the connexions between th& molecules renders it difficult 
to enunciate the precise form of the law.

The molecules of a gas in this theory are those portions of it which move about as a 
single body. These molecules may be mere points, or pure centres of force endowed 
with inertia, or the capacity of performing work while losing velocity. They may be 
systems of several such centres of force, bound together by their mutual actions, and in
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OE GASES. 55

this case the different centres may either be separated, so as to form a group of points, 
or they may be actually coincident, so as to form one point.

Finally, if necessary, we may suppose them to be small solid bodies of a determinate 
form; but in this case we must assume a new set of forces binding the parts of these 
small bodies together, and so introduce a molecular theory of the second order. The 
doctrines that all matter is extended, and that no two portions of matter can coincide in 
the same place, being deductions from our experiments with bodies sensible to us, have 
no application to the theory of molecules.

The actual energy of a moving body consists of two parts, one due to the motion of its 
centre of gravity, and the other due to the motions of its parts relative to the centre of 
gravity. I f  the body is of invariable form, the motions of its parts relative to the centre 
of gravity consist entirely of rotation, but if the parts of the body are not rigidly con
nected, their motions may consist of oscillations of various kinds, as well as rotation of 
the whole body.

The mutual interference of the molecules in their courses will cause their energy of 
motion to be distributed in a certain ratio between that due to the motion of „the centre 
of gravity and that due to the rotation, or other internal motion. I f  the molecules are 
pure centres of force, there can be no energy of rotation, and the whole energy is reduced 
to that of translation; but in all other cases the whole energy of the molecule may be 
represented by ^Mv2|3, where (3 is the ratio of the total energy to the energy of transla
tion. The ratio (3 will be different for every molecule, and will be different for the same 
molecule after every encounter with another molecule, but it will have an average value 
depending on the nature of the molecules, as has been shown by Clausius. The value 
of (3 can be determined if we know either of the specific heats of the gas, or the ratio 
between them.

The method of investigation which I  shall adopt in the following paper, is to deter
mine the mean values of the following functions of the velocity of all the molecules of a 
given kind within an element of volume:—

(a) the mean velocity resolved parallel to each of the coordinate axes;
(/3) the mean values of functions of two dimensions of these component velocities;
(y) the mean values of functions of three dimensions of these velocities.
The rate of translation of the gas, whether by itself, or by diffusion through another 

gas, is given by (a), the pressure of the gas on any plane, whether normal or tangential 
to the plane, is given by (f3), and the rate of conduction of heat through the gas is given
by M-

I  propose to determine the variations of these quantities, due, 1st, to the encounters 
of the molecules with others of the same system or of a different system; 2nd, to the 
action of external forces such as gravity; and 3rd, to the passage of molecules through 
the boundary of the element of volume.

I  shall then apply these calculations to the determination of the statical cases of the 
final distribution of two gases under the action of gravity, the equilibrium of tempe-
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rature between two gases, and the distribution of temperature in a vertical column. 
These results are independent of the law of force between the molecules. I shall also 
consider the dynamical cases of diffusion, viscosity, and conduction of heat, which 
involve the law of force between the molecules.

ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF GASES.

Let the masses of these molecules be M„ M2, and let their velocities resolved in three 
directions at right angles to each other be ^1? £ 1  and £*2, £2* The components of
the velocity of the centre of gravity of the two molecules will be

The motion of the centre of gravity will not be altered by the mutual action of the 
molecules, of whatever nature that action may be. We may therefore take the centre 
of gravity as the origin of a system of coordinates moving parallel to itself with uniform 
velocity, and consider the alteration of the motion of each particle with reference to this 
point as origin.

If we regard the molecules as simple centres of force, then each molecule will describe 
a plane curve about this centre of gravity, and the two curves will be similar to each 
other and symmetrical with respect to the line of apses. If  the molecules move with 
sufficient velocity to carry them out of the sphere of their mutual action, their orbits

will each have a pair of asymptotes inclined at an angle ^ — to the line of apses. The

asymptotes of the orbit of Mj will be at a distance from the centre of gravity, and 
those of M2 at a distance b2, where

M A = M 2&2.
The distance between two parallel asymptotes, one in each orbit, will be

b—bi —J— b2.
If, while the two molecules are still beyond each other’s action, we draw a straight 

line through Mj in the direction of the relative velocity of M, to M2, and draw from M2 
a perpendicular to this line, the length of this perpendicular will be b, and the plane 
including b and the direction of relative motion will be the plane of the orbits about 
the centre of gravity.

When, after their mutual action and deflection, the molecules have again reached a 
distance such that there is no sensible action between them, each will be moving with 
the same velocity relative to the centre of gravity that it had before the mutual action, 
but the direction of this relative velocity will be turned through an angle in the plane 
of the orbit.

I he angle 6 is a function of the relative velocity of the molecules and of b, the form 
of the function depending on the nature of the action between the molecules.

If  we suppose the molecules to be bodies, or systems of bodies, capable of rotation,

On the Mutual Action o f Two Molecules.

giM! + g9Ma
' M1 + M2 ’

’JiM1 + tj2M2 
Mj + Mg ’
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF GASES. 57

internal vibration, or any form of energy other than simple motion of translation, these 
results will be modified. The value of 6 and the final velocities of the molecules will 
depend on the amount of internal energy in each molecule before the encounter, and 
on the particular form of that energy at every instant during the mutual action. W e 
have no means of determining such intricate actions in the present state of our know
ledge of molecules, so that we must content ourselves with the assumption that the value 
of 6 is, on an average, the same as for pure centres of force, and that the final velocities 
differ from the initial velocities only by quantities which may in each collision be 
neglected, although in a great many encounters the energy of translation and the internal 
energy of the molecules arrive, by repeated small exchanges, at a final ratio, which we 
shall suppose to be that of 1 to (5—1.

W e may now determine the final velocity of M x after it has passed beyond the sphere 
of mutual action between itself and M2.

Let V be the velocity of Mx relative to M2, then the components of V are

i>25  ̂̂ l - ''^2*

The plane of the orbit is that containing V and Let this plane be inclined to a 
plane containing V and parallel to the axis of x ; then, since the direction of V is turned 
round an angle 2$ in the plane of the orbit, while its magnitude remains the same, we 
may find the value of ^  after the encounter. Calling it §'15

sin2H - \ / (% — *7i)2+ ( £ 2—£i)2sin20cosp}. • • (1)

There will be similar expressions for the components of the final velocity of in the 
other coordinate directions.

I f  we know the initial positions and velocities of Mx and M2 we can determine V, the 
velocity of M x relative to M2; b the shortest distance between M x and M2 if they had 
continued to move with uniform velocity in straight lines; and <p the angle which deter
mines the plane in which V and b lie. From V and b we can determine if  we know 
the law of force, so that the problem is solved in the case of two molecules.

W hen we pass from this case to that of two systems of moving molecules, we shall 
suppose that the time during which a molecule is beyond the action of other molecules 
is so great compared with the time during which it is deflected by that action, that we 
may neglect both the time and the distance described by the molecules during the 
encounter, as compared with the time and the distance described while the molecules 
are free from disturbing force. W e may also neglect those cases in which three or more 
molecules are within each other’s spheres of action at the/same instant.

On the Mutual Action o f Two Systems o f Moving Molecules.
Let the number of molecules of the first kind in unit of volume be N ,, the mass of each 

being M,. The velocities of these molecules will in general be different both in magni
tude and direction. Let us select those molecules the components of whose velocities

MDCCCLXVII. I
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58 ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY 01 GASES.

lie between , „ . 7
g, and &+*?£,, and ^  +  £ 1  and £i +  «£i>

and let the number of these molecules be dN,. The velocities of these molecules will 
be very nearly equal and parallel.

On account of the mutual actions of the molecules, the number of molecules which at 
a given instant have velocities within given limits will be definite, so that

............................................................(2)

We shall consider the form of this function afterwards.
Let the number of molecules of the second kind in unit of volume be N2, and let ^N2 

of these have velocities between J2 and ga+ d § 2, '*h and dtia+iiai £2 and £2+ d £ 2, where
dN d^2d)j.2d % 2.

The velocity of any of the d~N} molecules of the first system relative to the c/N2 mole
cules of the second system is V, and each molecule Mj will in the time bt describe a rela
tive path Yht among the molecules of the second system. Conceive a space bounded by 
the following surfaces. Let two cylindrical surfaces have the common axis Yo£ and 
radii b and b-\-db. Let two planes be drawn through the extremities of the line Ybt 
perpendicular to it. Finally, let two planes be drawn through making angles (p and 
<p + d<p with a plane through Y parallel to the axis of Then the volume included 
between the four planes and the two cylindric surfaces will be Y

If this volume includes one of the molecules M2, then during the time bt there will be 
an encounter between Mx and M2, in which b is between h and b- { - and between 
and <p-\-d<p.

Since there are molecules similar to Mx and ^N2 similar to M2 in unit of volume, 
the whole number of encounters of the given kind between the two systems will be

Ybdbd<pbtd$M
hi ow let Q be any property of the molecule M1? such as its velocity in a given direction, 

the square or cube of that velocity or any other property of the molecule which is altered 
in a known manner by an encounter of the given kind, so that Q becomes Q' after the 
encounter, then during the time bt a certain number of the molecules of the first kind 
have Q changed to Q', while the remainder retain the original value of Q, so that

W N , =  (Q'~Q)Ybdbd(pbt,

SQrfN,
“ sT =  (Q -  Q)Ybdbd ....(3)

Ileie refers to the alteration in the sum of the values of Q for the (ZNj molecules,

due to theii encounters of the given kind with the *ZN2 molecules of the second sort. 

In ordei to deteimine the value of —gp1, the rate of alteration of Q among all the 

molecules of the first kind, we must perform the following integrations:—
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. MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OE GASES. 5#

1st, with respect to <p from <p= 0  to <p=2sr.
2nd, with respect to 5 from 5 = 0  to 5 = oo . These operations will give the results of 

the encounters of every kind between the cZNj and ^N2 molecules.
3rd, with respect to cZN2, or 
4th, with respect to dN„ or
These operations require in general a knowledge of the forms o f a n d

1st. Integration with respect to <p.
Since the action between the molecules is the same in whatever plane it takes place,

/*2?r
we shall first determine the value of I (Q'—Q in several cases, making Q some

Jo
function of £, jy, and

(a) Let Q = £ , and Q'=£',, then

j ’o2’© - | . ) ^ = 5 ^ M 2( |2- | 1)4)r Sin2fl................................. (4)

(fi)Let Q = £i and Q '= |? ,

By transformation of coordinates wre may derive from this

with similar, expressions for the other quadratic functions of §, jy, J.
(y) Let Q = | , a n d  Q!=%i(S?i'+ < £+ ??); then putting !?+ « ;+ ?;= V ?, 

g + ^ + ? l= V I ,  and we find

J “ (l',V',5- g 1V;)d<p= i  4* sin5 4 { (|.- |,)V ;+ 2 |,(U -Y ?}

+  ( m^ M * )^ 8*-sin24-3*-isin2 24)2($1-g .X U -V f)

/  M \ 2
% + ( m~ + M2) (8t  sin2 sin2 2^)?1V’2

+  *»’ si" 2 2 4 )2 (1 ,- ! ,)^ .

0)

These are the principal functions of ?j, £ whose changes we shall have to consider; we 
shall indicate them by the symbols a, (3, or y, according as the function of the velocity 
is of one, two, or three dimensions.

2nd. Integration with respect to b.
We have next to multiply these expressions by bdb, and to integrate with respect to 

b from 5 = 0  to 5=oo. W e must bear in mind that 5 is a function of 5 and V, and can 
only be determined when the law of force is known. In the expressions which we have
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60 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

to deal with, 0 occurs under two forms only, namely, sin2 6 and sin2 20. If, therefore, we 
can find the values of ^

B1==£ Avrbdbsin2 and sin22 5 , ........ (8)

we can integrate all the expressions with respect to
B, and B2 will be functions of V  only, the form of which we can determine only in 

particular cases, after we have found 0 as a function of b and V.

Determination o f  0 fo r  certain laws o f  Force.
Let us assume that the force between the molecules M x and M2 is repulsive and varies 

inversely as the nth. power of the distance between them, the value of the moving force 
at distance unity being K , then we find by the equation of central orbits,

(9)

where x —-. or the ratio of b to the distance of the molecules a t a given tim e : is there-T7
fore a numerical quan tity ; a is also a numerical quantity and is given by the equation

,  /  V 9M 1M a y - »
a - * U ( M 1 + M J (10)

The limits of integration are # = 0  and x —x \  where x' is the least positive root of the 
equation

1 —x1
o

n— 1 ( i i )

I t  is evident that 0 is a function of a and n, and when n is known 0 may be expressed 
as a function of a only.

Also

- • • • • • • •  ( 12)
so that if  we put

4<ra^asin20, A2= f  sin220,  ........................ (13)

A x and A2 will be definite numerical quantities which may be ascertained when n is given,
2

and B, and B2 may be found by multiplying A, and As by V ” ' V,T:r!.

Before integrating further we have to m ultiply by V, so tha t the form in which V
will enter into the expressions which have to be integrated,with respect to dN, and <2N, 
will be

n — 5
y»-i

I t  will be shown that we have reason from experiments on the viscosity of gases to 
believe that n=5. In  this case Y  will disappear from the expressions of the form (3), 
and they will be capable of immediate integration with respect to dN, and dN2.
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MB. CLEBK MAXWELL ON THE DYNAMICAL THEOEY OF GASES. 61

I f  we assume n=  5 and put a4—2 cot22 <pand x —\ / l —tan2<p cos\J/,

2— 6— \ / c o s 2p£  y' 1 — sin2(p sin*\{/1 .........(14)

= \ / c o s  2<pFgin?s, J
where Fsin0 is the complete elliptic function of the first kind and is given in Legendre’s 
Tables. I  have computed the following Table of the distance of the asymptotes, the 
distance of the apse, the value of 0, and of the quantities whose summation leads to At 
and A2.

b. Distance 
of apse. e. sin20 

sin2 2$
sin2 
sin2 2(j>

o

0
/

0 infinite infinite
0

0
/
0 0 0

5 0 2381 2391 0 31 • 0 0 2 7 0 • 0 1 0 7 9

10 0 1658 1684 1 53 •01464 •03689
15 0 1316 1366 4 47 •02781 •11048
20 0 1092 1172 8 45 •05601 •21885
25 0 916 1036 14 15 •10325 •38799
30 0 760 931 21 42 •18228 •62942
35 0 603 845 31 59 •31772 •71433
40 0 420 772 47 20 •55749 1-02427
41 0 374 758 51 32 •62515 •96763
42 0 324 745 56 26 •70197 •85838
43 0 264 732 62 22 •78872 •67868
44 0 187 719 70 18 •88745 •40338
44 30 132 713 76 1 •94190 •21999
45 0 0 707 90 0 1-00000 •00000

A, sin2 0 = 2 * 6 5 9 5 . ............................................ (15)

A2= j W a  sin2 20=1*3682..................................................(16)

The paths described by molecules about a centre of 
force S, repelling inversely as the fifth power of the 
distance, are given in the figure.

The molecules are supposed to be originally moving 
with equal velocities in parallel paths, and the way in 
which their deflections depend on the distance of the path 
from S is shown by the different curves in the figure.

3rd. Integration with respect to dNt.
W e have now to integrate expressions involving various functions of £, and V 

with respect to all the molecules of the second sort. W e may write the expression to
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6 2 ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF OASES.

be integrated
J J J q Y  ^ f f y ^ ) d ^ d

where Q is some function of g, &c., already determined, and / 2 is the function 
which indicates the distribution of velocity among the molecules of the second kind.

In the case in which n=5, Y disappears, and we may write the result of integration
q n 2,

where Q is the mean value of Q for all the molecules of the second kind, and N2 is the 
number of those molecules.

If, however, n is not equal to 5, so that Y does not disappear, we should require to 
know the form of the function f  before we could proceed further with the integration.

The only case in which I  have determined the form of this function is tha t of one or 
more kinds of molecules which have by their continual encounters brought about a 
distribution of velocity such that the number of molecules whose velocity lies within 
given limits remains constant. In  the Philosophical Magazine for January 1860, I  have 
given an investigation of this case, founded on the assumption tha t the probability of a 
molecule having a velocity resolved parallel to x  lying between given lim its is not in any 
way affected by the knowledge that the molecule has a given velocity resolved parallel 
to y. As this assumption may appear precarious, I  shall now determine the form of the
function in a different manner.

On the Final Distribution o f Velocity among the Molecules o f Two Systems acting on one
another according to any Law o f Force.

From a given point O let lines be drawn representing in direction and 
magnitude the velocities of every molecule of either kind in unit of 
volume. The extremities of these lines will be distributed over space 
in such a way that if  an element of volume d \  be taken anywhere, the 
number of such lines which will terminate within will be f(r)dV , 
where r is the distance of LV from O.

A  B'

Let OA a be the velocity of a molecule of the first kind, and OB that of a mole
cule of the second kind before they encounter one another, then BA will be the velocity 
of A relative to B ; and if we divide AB in G inversely as the masses of the molecules, 
and join OG, OG will be the velocity of the centre of gravity of the two molecules.

Now let OA a and O B ^ ^  be the velocities of the two molecules after the 
encounter, GA GA and G B = G B ', and A'GB' is a straight line not necessarily in the 
p an e  of OAB. Also AGA =  20 is the angle through 'w hich the relative velocity is 
turned in the encounter in question. The relative motion of the molecules is com- 
p ete y defined if  we know BA the relative velocity before the encounter, the angle 
t  roug which BA is turned during the encounter, and <p the angle which defines the 

ection o the plane in which BA and BA.' lie. All encounters in which the magni- 
e an iiection of BA, and also 0 and <p, lie within certain almost contiguous limits,
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MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 63

we shall class as encounters of the given kind. The number of such encounters in unit 
of time will be

nxnj£de,................... ............................................ (17)
where nx and w2 are the numbers of molecules of each kind under consideration, and F  
is a function of the relative velocity and of the angle 0, and de depends on the limits of 
variation within which we class encounters as of the same kind.

Now let A describe the boundary of an element of volume dV  while AB and A'B' 
move parallel to themselves, then B, A', and B' will also describe equal and similar 
elements of volume.

The number of molecules of the first kind, the lines representing the velocities of 
which terminate in the element dV  at A, will be

7i1= f 1(a)dV .....................................................  . . (18) '
The number of molecules of the second kind which have velocities corresponding to OB 
will be

=fJJ>)dV; ...................................................  . (19)
and the number of encounters of the given kind between these two sets of molecules 
will be

f ^ f ^ d V ^ d e .........................................................(20)
The lines representing the velocities of these molecules after encounters of the given 
kind will terminate within elements of volume at A! and B', each equal to dV.

In  like manner we should find for the number of encounters between molecules 
whose original velocities corresponded to elements equal to dV  described about A' and 
B', and whose subsequent velocities correspond to elements equal to dV  described about 
A and B,

f l(a!)flb<)dV'Vde,.......................................................(21)
where F; is the same function of B'A' and A'GA that F  is of BA and AGA'. F  is there
fore equal to F'.

W hen the number of pairs of molecules which change their velocities from OA, OB 
to OA! OB' is equal to the number which change from OA', OB' to OA, OB, then the 
final distribution of velocity will be obtained, which will not be altered by subsequent 
exchanges. This will be the case when

.......................................................... (22)
Now the only relation between #, b and a\ V is

whence we obtain 

where

Mt«3+ M3̂ =   (23)

/i(« )= C /"S , / 2(£ )= < V > ,....................................(24)

M ia2=rM 2j33. .   (25)

By integrating a2 d£ drt d%, and equating the result to N n we obtain the

value of C,. If, therefore, the distribution of velocities among N! molecules is such that
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the number of molecules whose component velocities are between f  and n and

n+dv, and £ and £+<*£ 1S +<a
d̂̂̂êd̂dn̂.........................................(26)

64 MB. CLEBK MAXWELL ON THE DYNAMICAL THEOBY OF GASES.

then this distribution of velocities will not be altered by the exchange of velocities among 
the molecules by their m utual action.

This is therefore a possible form of the final distribution of velocities. I t  is also the 
only form; for if  there were any other, the exchange between velocities represented by 
OA and OA' would not be equal. Suppose th a t the num ber of molecules having velo
city OA' increases at the expense of OA. Then since the  to ta l num ber of molecules 
corresponding to OA' remains constant, OA' m ust communicate as many to OA", and so 
on till they return to OA.

Hence if OA, OA', OA", &c. be a series of velocities, there will be a tendency of each 
molecule to assume the velocities OA, OA', OA", &c. in  order, retu rn ing  to OA. Now 
it is impossible to assign a reason why the  successive velocities of a molecule should be 
arranged in this cycle, rather than  in the reverse order. If, therefore, the  direct exchange 
between OA and OA' is not equal, the equality cannot be preserved by exchange in a 
cycle. Hence the direct exchange between OA and OA' is equal, and the  distribution 
we have determined is the only one possible.

This final distribution of velocity is attained only when the  molecules have had a great 
number of encounters, bu t the great rapidity w ith which the  encounters succeed each 
other is such that in all motions and changes of the  gaseous system except the most 
violent, the form of the distribution of velocity is only slightly changed.

W hen the gas moves in mass, the velocities now determ ined are compounded with the 
motion of translation of the gas.

W hen the differential elements of the gas are changing their figure, being compressed 
or extended along certain axes, the values of the m ean square of the velocity will be 
different in different directions. I t  is probable th a t the form of the function will then be

/(§ » ? ); N. e< i +P
a l377TB (27)

where a, /3, 7 are slightly different. I  have not, however, attem pted to investigate the 
exact distribution of velocities in this case, as the theory of motion of gases does not 
require it.

W hen one gas is diffusing through another, or when heat is being conducted through 
a gas, the distribution of velocities will be different in the positive and negative directions, 
instead of being symmetrical, as in the case we have considered. The want of symmetry, 
however, may be treated as very small in most actual cases.

The principal conclusions which we may draw from this investigation are as follows. 
Calling a the modulus of velocity,

1st. The mean velocity is 2V— cc (28)
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2nd. The mean square of the velocity is fl2= §  a2................................................... (29)
3rd. The mean value of g2 is | 2= J a2......................................... .....  . (30)
4th. The mean value of J4 is | 4= } a 4.................................................... (31)
5th. The mean value of is |V = J a 4....................................................(32)
6th. W hen there are two systems of molecules

M ia2= M 2/B2, . ........................................................ (33)
whence

M ^ = M 3v23, . . . .............................................  (34)

ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OE GASES. 65

or the mean vis viva of a molecule will be the same in each system. This is a very 
important result in the theory of gases, and it is independent of the nature of the action 
between the molecules, as are all the other results relating to the final distribution of 
velocities. W e shall find that it leads to the law of gases known as that of Equivalent 
Volumes.

Variation o f Functions of the Velocity due to encounters between the Molecules.

W e may now proceed to write down the values of in the different cases. W e shall

indicate the mean value of any quantity for all the molecules of one kind by placing a 
bar over the symbol which represents that quantity for any particular molecule, but in 
expressions where all such quantities are to be taken at their mean values, we shall, for 
convenience, omit the bar. W e shall use the symbols dx and to indicate the effect 
produced by molecules of the first kind and second kind respectively, and h3 to indicate 
the effect of external forces. W e shall also confine ourselves to the case in which n=5, 
since it is not only free from mathematical difficulty, but is the only case which is con
sistent with the laws of viscosity of gases.

In  this case V disappears, and we have for the effect of the second system or the first,

. . . . . . .  (35)

where the functions of |,  ?j, £ in j(Q '— Q)d<p must be put equal to their mean values for 
all the molecules, and A x or A2 must be put for A according as sin2 or sin2 occurs in 
the expressions in equations (4), (5), (6), (7). W e thus obtain

(a) i t — NjMaAjda— | x) ; . . . . , . . . . . . (36)

MT (  K V  N2M2 )
1T“ VM1M2(M1+M2 )) Mx + M2 ( . . (37)

{2A1(i2- | 1)(M1i J+ M 2| 2)+ A 2M2( ^ x - 2 |^ = t ) }  ;J

MjUl (  K VN2M2 )
t t  y M 1M 2(M 1 +  M 2) )M1 +  M 2 L g g )

* 4 1 -{Ai(2M2| 2̂ 2—2M1| 1?7j +  (M1—M2)( |^ 2+ | 2̂ )) — 3A2M2( |2—iO fe—^i)};
M DCCCLXVII. K
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66 ME. CLEEK MAXWELL ON THE DYNAMICAL THEOBY OF GASES.

,  s
M  ~ i r - M,M,(M, +  M3) n ,m s { a , (g  -  v?+  2?.(U -  ■v;))

.H^ rs(2 A ,-3 A 3)2(?a- | 1)(U -y ? )

M a
(2 A ,+ 2 A 2)|,V !

(39)

+  ( h ^ ) ‘(2A . - 2 A 1)2(5>- S 1)V*};

using the symbol \  to indicate variations arising from the action of molecules of the 
second system.

These are the values of the rate of variation of the mean values of g2 gx and 
t  Vf, for the molecules of the first kind due to their encounters w ith molecules of the 
second kind. In  all of them we must m ultiply up all functions of g, q, £, and take the 
mean values of the products so found. As this has to be done for all such functions, I 
have omitted the bar over each function in these expressions.

To find the rate of variation due to the encounters among the particles of the same 
system, we have only to alter the suffix (2) into (1) throughout, and to change KL, the 
coefficient of the force between M, and M2 into K 15 th a t of the force between two mole
cules of the first system. W e thus find

(40)

(0) =  ; ■ (« )

: ....................................................... (4 2 )

M  ( J i? ) 1MiN,A13(f;.V f-IV ?)............................................. (43)

These quantities must be added to those in equations (36) to (39) in order to get the 
rate of variation in the molecules of the first kind due to their encounters with mole
cules of both systems. W hen there is only one kind of molecules, the latter equations 
give the rates of variation at once. »*

On the Action o f External Forces on a System o f Moving Molecules.
W e shall suppose the external force to be like the force of gravity, producing equal 

acceleration on all the molecules. Let the components of the force in the three coor
dinate directions be X, Y, Z. Then we have by dynamics for the variations of g, g2, and 
£V2 due to this cause,

(a) (44)
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OE GASES. 67

0 3 ) A I * = 2 ! X ; ............................................................. (46)

^ = » X + g Y ;  ................................................... (46)

(r) hl!r~  = 2 |( |X + „ Y + ? Z )+ X V ’ ; ..........................(47)

where refers to variations due to the action of external forces.

On the Total rate o f change o f the different functions o f the velocity o f the molecules
o f the first system arising from their encounters with molecules o f both systems and 
from the action o f external forces.

To find the total rate of change arising from these causes, we must add

?iQ &jQ,
St ’ I and

the quantities already found. W e shall find it, however, most convenient in the re
mainder of this investigation to introduce a change in the notation, and to substitute for

| ,  n, and J, u-h£, and w + £ , .... (48)
where u, v, and w are so chosen that they are the mean values of the components of the 
velocity of all molecules of the same system in the immediate neighbourhood of a given 
point. W e shall also write

M ,NX= ^ ,  M2N2= f 2, .......................,. . . . (49)
where g>x and g>2 are the densities of the two systems of molecules, that is, the mass in 
unit of volume. W e shall also write

(
K

M 1M S(M 1 -I- Mg))
i
= k, and . . (50)

fu ?25 and Tt are quantities the absolute values of which can be deduced from expe
riment. W e have not as yet experimental data for determining M, N, or K.

W e thus find for the rate of change of the various functions of the velocity,

= ^ A j|>2(‘W2—Wj)-f-X; (51)

also

(0 ) ^ f = * , A * M + ? ? - 2g0
C / _________2 ---------------- 2 __________2\)

uiy + A 2[v2— -f —2u2—u, ) |

8{2A.(M= ^ - M .l? )+ A»M= ( ^ + ? ! - 2l ? + » * + n - 2g )} ;

g.?* M
~w =  — M7+M^(2A,—3A,)(««!!—«,)(»,—V,)

(52)

7 +Ms{2Al(M^ - M ^ '’1')—3A1Ma(?1, 1+ J j),a) | .
(53)
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68 ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF GASES.

(y) As the expressions for the variation of functions of three dimensions in mixed 
media are complicated, and as we shall not have occasion to use them, I  shall give the 
case of a single medium,

Theory o f a Medium composed o f Moving Molecules.
We shall suppose the position of every moving molecule referred to three rectangular 

axes, and that the component velocities of any one of them, resolved in the directions of 
x, y, z, are

v+y,w-f£ , 
where u, v, w are the components of the mean velocity of all the molecules which are 
at a given instant in a given element of volume, and §, ? are the components of the
relative velocity of one of these molecules with respect to the mean velocity.

The quantities u, v, w may be treated as functions of y, , and £, in which case differ
entiation will be expressed by the symbol d.The quantities §, 77, £, being different for 
every molecule, must be regarded as functions of t for each molecule. Their variation 
with respect to t will be indicated by the symbol

The mean values of £2 and other functions of £, 77, £ for all the molecules in the ele
ment of volume may, however, be treated as functions of x, y, z, and t.

I f  we consider an element of volume which always moves with the velocities u, v, w, 
we shall find that it does not always consist of the same molecules, because molecules 
are continually passing through its boundary. W e cannot therefore treat it as a mass 
moving with the velocity u, v, w, as is done in hydrodynamics, but we must consider 
separately the motion of each molecule. W hen we have occasion to consider the vari
ation of the properties of this element during its motion as a function of the time we 
shall use the symbol B.

W e shall call the velocities u, v, w the velocities of translation of the medium, and 
£, *i, £ the velocities of agitation of the molecules.

Let the number of molecules in the element dx dy dz be N dx dy , then we may call 
N the number of molecules in unit of volume. I f  M is the mass of each molecule, and 
S the density of the element, then

MN=g>........................ ...................... .....  (55)

Transference o f  Quantities across a Plane
W e must next consider the molecules which pass through a given plane of unit area in 

unit of time, and determine the quantity of matter, of momentum, of heat, &c. which 
is transferred from the negative to the positive side of this plane in unit of time.

W e shall first divide the N molecules in unit of volume into classes according to the 
value of I, *7, and £ for each, and we shall suppose that the number of molecules in unit 
of volume whose velocity in the direction of * lies between 5 and *+<£, * and ,  +  «Z*, 
% and %-\~d% is dN, <2N will then be a function of the component velocities, the sum of
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF OASES. 69

which being taken for all the molecules will give N the total number of molecules. 
The most probable form of this function for a medium in its state of equilibrium is

dN=z^-,e---- *d%drid?;................................... . (56)

In the present investigation we do not require to know the form of this function.
Now let us consider a plane of unit area perpendicular to moving with a velocity 

of which the part resolved parallel to x  is u'. The velocity of the plane relative to the 
molecules we have been considering is v!— (u- and since there are of these mole
cules in unit of volume it will overtake

(W-(«+|))<ZN

such molecules in unit of time, and the number of such molecules passing from the 
negative to the positive side of the plane, will be

(w-j-£—
Now let Q be any property belonging to the molecule, such as its mass, momentum, 
viva, &c., which it carries with it across the plane, Q being supposed a function of 2* or of 
£, 7i, and £, or to vary in any way from one molecule to another, provided it be the same 
for the selected molecules whose number is c?N, then the quantity of Q transferred 
across the plane in the positive direction in unit of time is

§(u— u!+|)Q ^N , 
or

(u—u')§QdN -j-JiQ^N......  . (57)

I f  we put QN for jQ^N, and |Q N  for J|Q<ZN, then we may call Q the mean value of 
Q, and |Q  the mean value of |Q , for all the particles in the element of volume, and we 
may write the expression for the quantity of Q which crosses the plane in unit of time

(u— w ')Q N + |Q N ................................................. (58)

(a) Transference o f Matter across a Plane— Velocity o f the Fluid.
To determine the quantity of m atter which crosses the plane, make Q equal to M 

the mass of each molecule; then, since M is the same for all molecules of the same kind, 
M = M ; and since the mean value of f is zero, the expression is reduced to

(u—w')MN =  — u')g..............................................(59)
I f  u—u\ or if the plane moves with velocity u, the whole excess of matter transferred
across the plane is zero; the velocity of the fluid may therefore be defined as the velo
city whose components are u, v, w.

(fi) Transference o f Momentum across a Plane— System o f Pressures at any point
o f the Fluid.

The momentum of any one molecule in the direction of x  is M(w-j-f). Substituting 
this for Q, we get for the quantity of momentum transferred across the plane in the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 N

ov
em

be
r 

20
24

 



70 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES.

positive direction
(60)

I f  the plane moves with the velocity u, this expression is reduced to fg>, where f  repre
sents the mean value of f2.

This is the whole momentum in the direction of of the molecules projected from the 
negative to the positive side of the plane in unit of time. The mechanical action 
between the parts of the medium on opposite sides of the plane consists partly of the 
momentum thus transferred, and partly of the direct attractions or repulsions between 
molecules on opposite sides of the plane. The latter part of the action must be very 
small in gases, so that we may consider the pressure between the parts of the medium 
on opposite sides of the plane as entirely due to the constant bombardment kept up 
between them. There will also be a transference of momentum in the directions of and 
z across the same plane,

(u—....... ............................................ (61)
and

(w— u')wq................(62)
where tyi and represent the mean values of these products.

I f  the plane moves with the mean velocity of the fluid, the total force exerted on the 
medium on the positive side by the projection of molecules into it from the negative side 
will be

a normal pressure in the direction of x,
a tangential pressure in the direction of

and a tangential pressure in the direction of z.
I f  X, Y, Z are the components of the pressure on unit of area of a plane whose 

direction cosines are Z, m, w,
X = Z l2g

Z = ^ § + m ^ + w ^ 2g.

W hen a gas is not in a state of violent motion the p 
equal, in which case, if we put

. (63)

ressures in all directions are nearly

=  ..................................................  (64)
the quantity pwill represent the mean pressure at a giveif point, and f;2g>, and will
differ from p  only by small quantities; and %r\g will then be also small quan
tities with respect to p.

Energy in the Medium— Actual Heat.
The actual energy of any molecule depends partly on the velocity of its centre of

gravity, and partly on its rotation or other internal motion with respect to the centre of 
gravity. I t  may be written

^M{(w+ £)2+ ( ^ ) 2+ ( w + O T + i E M , ............................(65)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 N

ov
em

be
r 

20
24

 



ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OE OASES. 71

where |E M  is the internal part of the energy of the molecule, the form of which is at 
present unknown. Summing for all the molecules in unit of volume, the energy is

i ( ^ + ^ + w 2)f + i ( r + ^ + r ) ? + P ?............................................. (66)
The first term gives the energy due to the motion of translation of the medium in 

mass, the second that due to the agitation of the centres of gravity of the molecules, and 
the third that due to the internal motion of the parts of each molecule.

I f  we assume with Clausius that the ratio of the mean energy of internal motion to 
that of agitation tends continually towards a definite value (/3—1), we may conclude that, 
except in very violent disturbances, this ratio is always preserved, so that

E = ( / 3 - l ) ( f + ^ + r ) ..................................................... (67)
The total energy of the invisible agitation in unit of volume will then be

W + » 2+ ? %  • .................................. ..... • • (68)
or

i(3p. . . . . .  . ................................................. (69)
This energy being in the form of invisible agitation, may be called the total heat in 

the unit of volume of the medium.

(7) Transference o f Energy across a Plane— Conduction o f Heat.
Putting

Q==±/3(f-H2+ £ 2)M, and . . . . . . .  (70)
we find for the quantity of heat carried over the unit of area by conduction in unit of time

w + S j h i t )?, . . . . . . . . . .  (7 i)
where | 3, &c. indicate the mean values of | 3, &c. They are always small quantities.

On the Pate o f Variation o f Q in an Element o f  , Q being any property o f the
Molecules in that Element.

Let Q be the value of the quantity for any particular molecule, and Q the mean value 
of Q for all the molecules of the same kind within the element.

The quantity Q may vary from two causes. The molecules within the element may 
by their mutual action or by the action of external forces produce an alteration of Q, or 
molecules may pass into the element and out of it, and so cause an increase or diminution 
of the value of Q within it. I f  we employ the symbol & to denote the variation of Q 
due to actions of the first kind on the individual molecules, and the symbol B to denote 
the actual variation of Q in an element moving with the mean velocity of the system of 
molecules under consideration, then by the ordinary investigation of the increase or 
diminution of matter in an element of volume as contained in treatises on Hydrodynamics,

- ^ { ( u- ^ ) Q N + ^ n } - 5 {(w- w')Q N + ?Q n },
• • (72)
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72 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OE GASES.

where the last three terms are derived from equation (59) and two similar equations, and 
denote the quantity of Q which flows out of an element of volume, that element moving 
with the velocities u'y v', w'. I f  we perform the differentiations and then make u'=u, 
v'=v, and w'=w, then the variation will be that in an element which moves with the 
actual mean velocity of the system of molecules, and the equation becomes

Equation o f Continuity.
Put Q = M  the mass of a molecule; M is unalterable, and we have, putting M N =g,

t ? + e ( £ + s + t ) - 0........................................... P<>
which is the ordinary equation of continuity in hydrodynamics, the element being sup
posed to move with the velocity of the fluid. Combining this equation with that from 
which it was obtained, we find

N i + S ( | « NH | ( ^ N) + £ ( ^ N) = N ¥ '  • • • • • •  (75)
a more convenient form of the general equation.

Equations o f Motion (a).
To obtain the Equation of Motion in the direction of put Q = M 1(w1-j-li), the mo

mentum of a molecule in the direction of x.

W e obtain the value of from equation (51), and the equation may be written

•  •  •  (76)

In this equation the first term denotes the efficient force per unit of volume, the 
second the variation of normal pressure, the third and fourth the variations of tangential 
pressure, the fifth the resistance due to the molecules of a different system, and the sixth 
the external force acting on the system.

The investigation of the values of the second, third, and fourth terms must be deferred 
till we consider the variations of the second degree.

Condition o f Equilibrium o f a Mixture o f Gases.
In a state of equilibrium ux and u2 vanish, becomes and the tangential pressures

vanish, so that the equation becomes

............................................................(77)

which is the equation of equilibrium in ordinary hydrostatics.
This equatiqn, being true of the system of molecules forming the first medium inde-
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MR. CLERK MAXWELL OX THE DYNAMICAL THEORY OE GASES. 73

pendently of the presence of the molecules of the second system, shows that if several 
kinds of molecules are mixed together, placed in a vessel and acted on by gravity, 
the final distribution of the molecules of each kind will be the same as if none of the 
other kinds had been present. This is the same mode of distribution as that which 
D alton considered to exist in a mixed atmosphere in equilibrium, the law of diminution 
of density of each constituent gas being the same as if no other gases were present.

This result, however, can only take place after the gases have been left for a consider
able time perfectly undisturbed. If  currents arise so as to mix the strata, the composi
tion of the gas will be made more uniform throughout.

The result at which we have arrived as to the final distribution of gases, when left to 
themselves, is independent of the law of force between the molecules.

Diffusion o f Gases.
If  the motion of the gases is slow, we may still neglect the tangential pressures. The

equation then becomes for the first system of molecules

.................................. (78>
and for the second,

6 g ? ..........................................(79)

In all cases of quiet diffusion we may neglect the first term of each equation. If  we 
then put and we find by adding,

! = X f . ................................................................ (30)

If we also put -fp 2u.2 then the volumes transferred in opposite directions across
a plane moving with velocity u will be equal, so that

p,(ul-u )= p !,(u~u1) = ^ K-.( x ^ ) .........(81)

Her e pfu^ — u)is the volume of the first gas transferred in unit of time across unit 
of area of the plane reduced to pressure unity, and at the actual temperature; and 
p 2(u— u2) is the equal volume of the second gas transferred across the same area in the 
opposite direction.

The external force X  has very little effect on the quiet diffusion of gases in vessels of 
moderate size. We may therefore leave it out in our definition of the coefficient of 
diffusion of two gases.

When two gases not acted on by gravity are placed in different parts of a vessel at equal 
pressures and temperatures, there will be mechanical equilibrium from the first, and u 
will always be zero. This will also be approximately true of heavy gases, provided the 
denser gas is placed below the lighter. Mr. G raham has described in his paper on th e  
Mobility of Gases*, experiments which were made under these conditions. A vertical

* Philosophical Transactions, 1863.
!! DCC'CLXVII. L
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74 ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OE OASES.

tube had its lower tenth part filled with a heavy gas, and the remaining nine-tenths with 
a lighter gas. After the lapse of a known time the upper tenth part of the tube was 
shut off, and the gas in it analyzed, so as to determine the quantity of the heavier gas 
which had ascended into the upper tenth of the tube during the given time.
In this case we have u — 0,

n v  =  — PiP* -1 dx *

(82)

(83)

and by the equation of continuity,

whence

or if we put D =
gl

................................................................... (84)

dpx__ P i 1 d*Pi . . .   (85)
dt P dot? * ' \ J

• .................................................................................. ( 8 6 )

The solution of this equation is
'plz=zCl-\-C2e~rClmcos &c. . . . . . . .  (87)

I f  the length of the tube is a, and if  it is closed at both ends,
7T2D —t  Air2V> ' —rp

i ) ,= C 1+ C !1«~'Jr 'c o s “ + C ,«_*^r ‘c o s 2 ^ +  & c.,............................ (88)

where C„ C2, C3 are to be determined by the condition tha t when 0, from
A—0 to a i id ^ ^ O  from x = ^ d  to The general expression for the case
in which the first gas originally extends from x —0 to x —b> and in which after a time t  
the gas from x= 0  to x —c is collected, is

Pi
P

b 2a ( -Z2JLt , no. .
“ “2 sm —  sm

•7xb 
a

—. 0 a22"4
2 itb 

a
2jrc 

a (89)

where 1 is the proportion of the first gas to the whole in the portion from # = 0  to
X=zC.

In  Mr. Graham’s experiments, in which one-tenth of the tube was filled with the first 
gas, and the proportion of the first gas in the tenth  of the tube at the other end ascer
tained after a time t, this proportion will be

px 1 20
~p~~ 10”  ir*

7T2D
e °2 sin2— sin2 2 sin2 3 , • (90)

W e find for a series of values of taken at equal intervals of time T, where

r p __ Io g e 1 0
IOtt2 D
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF GASES. 75

Time.
0
T

2 T
3 T 
4 T  
5 T 
6 T 
8 T

10 T 
12 T

P i.
P

0
•01193
•02305
•03376
•04366
•05267
•06072
•07321
•08227
•08845
•10000

Mr. Graham’s experiments on carbonic acid and air, when compared with this Table, give 
T = 5 0 0  seconds nearly for a tube 0*57 metre long. Now

whence

-jn_log* 1° «2
lCbr2 T ’

D = -0235

(91)

for carbonic acid and air, in inch-grain-second measure.

Definition o f the Coefficient o f Diffusion.

D is the volume of gas reduced to unit of pressure which passes in unit of time 
through unit of area when the total pressure is uniform and equal to and the pressure 
of either gas increases or diminishes by unity in unit of distance. D may be called the 
coefficient of diffusion. I t  varies directly as the square of the absolute temperature, and 
inversely as the total pressure p.

The dimensions of D are evidently L2T -1, where L and T are the standards of length 
and time.

In  considering this experiment of the interdiffusion of carbonic acid and air, we have 
assumed that air is a simple gas. Now it is well known that the constituents of air can 
be separated by mechanical means, such as passing them through a porous diaphragm, 
as in Mr. Graham’s experiments on Atmolysis. The discussion of the interdiffusion of 
three or more gases leads to a much more complicated equation than that which we have 
found for two gases, and it is not easy to deduce the coefficients of interdiffusion of the 
separate gases. I t  is therefore to be desired that experiments should be made on the 
interdiffusion of every pair of the more important pure gases which do not act chemically 
on each other, the temperature and pressure of the mixture being noted at the time of 
experiment.

Mr. Graham has also published in Brande’s Journal for 1829, pt. 2, p. 74, the results
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70  m e . c l e e k  m a x w e l l  o x  t h e  d y n a m i c a l  TH EO EX OE G-ASES.

of experiments on the diffusion of various gases out of a vessel through a tube into air. 
The coefficients of diffusion deduced from these experiments are—

Air a n d  H y d r o g e n ......... *026216
Air and Marsh-gas . . . . .  *010240
A ir and A m m o n ia ............*00962
Air and Olefiant g a s ........... *00771
A ir and Carbonic acid . . . . *00682
A ir and Sulphurous acid . . . *00582
Air and C h lo rine ..................*00486

The value for carbonic acid is only one th ird  of th a t deduced from the experiment 
with the vertical column. The inequality of composition of the mixed gas in different 
parts of the vessel is, however, neglected; and the  diam eter of the tube a t the middle 
part, where it was bent, was probably less than  th a t given.

Those experiments on diffusion which lasted ten hours, all give smaller values of D 
than those which lasted four hours, and this would also result from the m ixture of the 
gases in the vessel being imperfect.

Interdiffusion through a small hole.
W hen two vessels containing different gases are connected by a small hole, the m ixture 

of gases in each vessel will be nearly uniform except near the h o le ; and the inequality 
of the pressure of each gas will extend to a distance from the hole depending on the 
diameter of the hole, and nearly proportional to th a t diameter.

Hence in the equation

...................................(92)
dv

the term will vary inversely as the diameter of the hole, while ul and u2 will not 
vary considerably with the diameter.

Hence when the hole is very small the right-hand side of the equation may be neg
lected, and the flow of either gas through the hole will be independent of the flow of the 
other gas, as the term fcA§!§2(u2—u j  becomes comparatively insignificant.

One gas therefore will escape through a very fine hole into another nearly as fast as 
into a vacuum ; and if  the pressures are equal on both sides, the volumes diffused will be 
as the square loots of the specific gravities inversely, which is the  law of diffusion of 
gases established by G raham*.

Variation o f the invisible agitation (/3).
By putting for Q in equation (75)

M /
Q = T ((» .+ ? .)3+(i>l +  »,)2+(TO1+ ? 1)!+ (/3 -l)(S + > ;;+ ?!)), . . (93)

* Trans, lioyal Society of Edinburgh, vol. xii. p. 222.
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ME. CLEEK M AXW ELL OX THE DYNAM ICAL THEOEY OE OASES. 77

and eliminating by means of equations (76) and (52), we find

j t , | f t ( s + , ; + r a + f , a £ + t . « 5 l + e.5 ! 5 ‘

+»?. &+f)+t« (5+S)+t,u (§+£)

~  iv/ 1+ m;{ M2[(!̂ —*i )2+(*2—®i)!+ ( w2—w,)a] + M 2(g + ^ - |-? 2 )—

Iii this equation the first term represents the variation of invisible agitation or h e a t; 
the second, third, and fourth represent the. cooling by expansion; the fifth, sixth, and 
seventh the heating effect of fluid friction or viscosity; and the last the loss of heat by 
conduction. The quantities on the other side of the equation represent the thermal 
effects of diffusion, and the communication of heat from one gas to the other.

The equation may be simplified in various cases, which we shall take in order.

1st. Equilibrium o f Temperature between two Gases.— Law o f Equivalent Volumes.
W e shall suppose that there is no motion of translation, and no transfer of heat by 

conduction through either gas. The equation (94) is then reduced to the following form,

f c ^ W 8 + ^ + 0 = i i ^ J ^ 8 + ^ + « ) - M ^ 8 + « + ? ! ) } ,  • - (95)
I f  we put

M M
M ;+M ;(S+’’’+ - ) = Ci” and MT+M2( S + ’I'+ ? y = Q -  • • • • (96)

we find
A  o z . A

| i (Qs- Q 1) = - H^ - 2( M ^ 1+ M 1?1|32)(Q3- Q 1) , ............................ (97)
or

Q2— Q1 = Ctf-”* ,w h e re  n =̂~̂J - L .  . . . (98)

If, therefore, the gases are in contact and undisturbed, Qx and Q2 will rapidly become 
equal. Now the state into which two bodies come by exchange of invisible agitation is 
called equilibrium of heat or equality of temperature. Hence when two gases are at 
the same temperature,

Q != Q 2, .  ....................................... .....  (99)
or

- . q , M ^a+^+g) 
q2
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78 ME. OLEEK MAXWELL ON THE DYNAMICAL THEOEY OE GASES.

Hence if the pressures as well as the temperatures be the same in two gases,
m 1= m 3 
§1

or the masses of the individual molecules are proportional to the density of the gas.
This result, by which the relative masses of the molecules can be deduced from the 

relative densities of the gases, was first arrived at by Gay-Lussac from chemical consi
derations. I t  is here shown to be a necessary result of the Dynamical Theory of Gases; 
and it is so, whatever theory we adopt as to the nature of the action between the indi
vidual molecules, as may be seen by equation (34), which is deduced from perfectly general 
assumptions as to the nature of the law of force.

sM
W e may therefore henceforth put for j ^ ,  where 8V s2 are the specific gravities of 

the gases referred to a standard gas.
I f  we use 0 to denote the temperature reckoned from absolute zero of a gas thermo

meter,. M0 the mass of a molecule of hydrogen, its mean square of velocity at tempe
rature unity, s the specific gravity of any other gas referred to hydrogen, then the mass 
of a molecule of the other gas is

M = M 0s.....................................................................(101)
Its mean square of velocity,

V * = ~ V # ....................................................................... (102)
Pressure of the gas,

p = i l w i -  ........................................................(103)

W e may next determine the amount of cooling by expansion.

Cooling by Expansion.
Let the expansion be equal in all directions, then

du dv  dw   1
dx dy dz

and and all terms of unsymmetrical form will be zero.

(104)

I f  the mass of gas is of the same temperature throughout there will be no conduction 
of heat, and the equation (94) will become

t P ^ T - * V * ! f = 0 , ............................ ...................... (105)

2^ = 3/3T 2 = 3 /3t > ......................

•

/ol
<*l£

II

which gives the relation between the density and the temperature in a gas expanding
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ME. CLERK MAXWELL ON THE DYNAMICAL THEORY OE GASES. 79

without exchange of heat with other bodies. W e also find
. . . bpB?.. B0

7 - 7 + T

................................................. (io s)

which gives the relation between the pressure and the density.

Specific HeaLof Unit o f  Mass at Constant Volume.
The total energy of agitation of unit of mass is /3V2= E , or

.................................................................... (109)

If, now, additional energy in the form of heat be communicated to it without changing 
its density,

B E =  3/3 b P - f fP  Bj.................................................(HO)
2 §2 0 '

Hence the specific heat of unit of mass of constant volume is in dynamical measure

.................................................................( i n )d0 2 §9

Specific Heat o f Unit o f Mass at Constant Pressure.
By the addition of the heat BE the temperature was raised B0 and the pressure 

Now, let the gas expand without communication of heat till the pressure sinks to its 
former value, and let the final temperature be 5-f-B'0. The temperature will thus sink 
by a quantity b0— b'0, such that

whence

B0—b 1  2 "dp  2 b0
0 — 2 + 3/3 “jo- 2 + 3/3 T ’

b'6 _  3)3 .
0 2+3/3 0 f

and the specific heat of unit of mass at constant pressure is

(112)

|E _ 2 ± 3 ^ p  ........................................................... (113)
B'0 2 g '

The ratio of the specific heat at constant pressure to that of constant volume is known 
in several cases from experiment. W e shall denote this ratio by

.......................................................(114)
whence

..........................................................................  (115)

The specific heat of unit of volume in ordinary measure is at constant volume
1 P 

7 —1 J0’ (HO)
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80 ME. CLEEK MAXWELL ON THE DYNAMICAL TI1EOEY OE GASES.

and at constant pressure
7  P_

ry —  1 J 0  ’
(117)

where J  is the mechanical equivalent of un it of heat.
From these expressions Dr. Rankine* has calculated the specific heat of air, and has 

found the result to agree with the value afterwards determined experimentally by
M . REGITATJLTf.

Thermal Effects o f  Diffusion.
I f  two gases are diffusing into one another, then, om itting the terms relating to heat 

generated by friction and to conduction of heat, the equation (94) gives
-x % /  , , , , , (du^ dv% 'l

f e ,^ /3 , ( g + « + ? ! ) + f e ^ A ( S + < ! i+ ? l ) + l 'i  ( & + ^ , + x j + ^ 5\ r f ? + ‘̂ + ' S ) !  118)

z=zfcg1g2A 1{ (u 1— M2)2+ ( v 1 — w2)2}. j

By comparison with equations (78), (79), the right-hand side of this equation becomes

+£3^2)+ X ( f 1t?1+ ^ 2 )  4~ ’Z,(glw1+§

-(t«.+ ̂ '.+ S‘-.)- (S«. + f
— is  1 ̂  W + w 1)—is* + ^ 2 + w»)'

The equation (118) may now he written 

■§£ 1 ̂  (ui +  ̂ 1 + + /3i(|2+ +  £?)) 4~ ■§£ 2^  (ut4“ 4- -f* /32(f 2 4-^4- £2 ))

= X ( ?1w1+ ^ 2) + Y ( ^ 1+ ^ 2)4-Zfc1w14-f2W2) ~  ’& -)• J
(119)

The whole increase of energy is therefore tha t due to the action of the external 
forces minus the cooling due to the expansion of the mixed gases. I f  the diffusion 
takes place without alteration of the volume of the mixture, the heat due to the mu
tual action of the gases in diffusion will be exactly neutralized by the cooling of each 
gas as it expands in passing from places where it is dense to places where it is rare.

Determination o f  the Inequality o f  Pressure different directions due to the
Motion o f  the Medium.

Let us put
ei!?=Pi4-2i and f2| 2= p 2d ........................................(120)

Then by equation (52),

~§t== ^i^nSdi Mj + Mg 4- oMjjAjj)^!—#(3A2—2A,)

M g --------- 2 — ----- 2 —-------- 2

A2 — |  A1)(2«1 — — —> M X+ M “  3  

* Transactions of the Eoyal Society of Edinburgh, vol. xx. (1850).

• ( 121) 

•f* Comptes Eendus, 1853.
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF OASES. 81

the last term depending on diffusion; and if  we omit in equation (75) terms of three 
dimensions in H, y, £, which relate to conduction of heat, and neglect quantities of the 
form %t}g and ff2— p, when not multiplied by the large coefficients k x and k2, we get

(122)

I f  the motion is not subject to any very rapid changes, as in all cases except that of 

the propagation of sound, we may neglect In  a single system of molecules

- = = - 3 £ A 2̂ ,  ....................................... . . (123)
whence
2 p\du 1 / du, ;

3 k A tf\d x  3 \ d x Ĵ 0 ^ 4 )
I f  we make

..................... .....  ............................ (125)

[h will be the coefficient of viscosity, and we shall have by equation (120),
„„ f du 1 dw \ 1

jp 3 \  d y ^  dz y

„ f dv 1 dw \ "1
S t= P -  fy \T y~ -i\d x+ T + T : )}>

(dw 1 /du do dw\ 1

>

J

(126)

and by transformation of coordinates we obtain

(127)

These are the values of the normal and tangential stresses in a simple gas when the 
variation of motion is not very rapid, and when the coefficient of viscosity, is so small 
that its square may be neglected.

Equations o f Motion corrected fo r  Viscosity. 
Substituting these values in the equation of motion (76), we ffnd

Bw dp fd*ud?u 1 d / d u  dv d w \ _____ v
 ̂ B^ ' dx ^ \ d x <i*dy i *dz'2j 3 f ’ (128)

with two other equations which may be written down from symmetry. The form of 
these equations is identical with that of those deduced by P oisson* from the theory of

* Journal de l’Ecole Polytechnique, 1829, tom. xiii. cah. xx. p. 139.
M DCCCLXVII. M
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82 ME. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GrASES.

elasticity, by supposing the strain to be continually relaxed at a rate proportional to its 
amount. * The ratio of the third and fourth terms agrees with tha t given by Professor

S t o k e s*.
I f  we suppose the inequality of pressure which we have denoted by to exist in the 

medium at any instant, and not to be maintained by the motion of the medium, we find, 

from equation (123), q<t=C^ , ........................................................  . (129)

= C ^ i f T = 3 ^ = | ; ....................... (130)

the stress q is therefore relaxed at a rate proportional to itself, so th a t

W e may call T the modulus of the time of relaxation.
I f  we next make k=  0, so that the stress q does not become relaxed, the medium will

be an elastic solid, and the equation

^ w £ )+ 2/ £ - ^ ( r x +Tv + d£ ) = = ° ................................ ..... (132)
may be written

^ { ( ^ —P ) - t i ?( ^ + 4 + ^ ) } ==° , .......................... * (133)
where a, /3, y are the displacements of an element of the  medium, and p xx is the normal 
pressure in the direction of x. I f  we suppose the initial value of this quantity zero, and 
/pxx originally equal to p, then, after a small displacement,

_ (da d^
dz )  dx ’ (134)

and by transformation of coordinates the tangential pressure

The medium has now the mechanical properties of an elastic solid, the rigidity of 
which is^>, while the cubical elasticity is

The same result and the same ratio of the elasticities would be obtained if  we supposed 
the molecules to be at rest, and to act on one another with forces depending on the 
distance, as in the statical molecular theory of elasticity. The coincidence of the pro
perties of a medium in which the molecules are held in  equilibrium by attractions and 
repulsions, and those of a medium in which the molecules move in straight lines w ith
ou t acting on each other at all, deserves notice from those who speculate on theories of 
physics.

I  he fluidity of our medium is therefore due to the m utual action of the molecules, 
causing them to be deflected from their paths.

“ On the Friction of Fluids in Motion and the Equilibrium and Motion of Elastic Solids,” Cambridge 
Phil. Trans, vol. viii. (1845), p. 297, equation (12).

+ Ibid. p. 311, equation (29).
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MU. CLERK MAXWELL OX THE DYNAMICAL THEORY OF OASES. 83

The coefficient of instantaneous rigidity of a gas is therefore p. "|
The modulus of the time of relaxation is T. V (136)
The coefficient of viscosity is p —PT. J

Now p  varies as the density and temperature conjointly, while T varies inversely as 
the density.

Hence (a varies as the absolute temperature, and is independent of the density.
This result is confirmed by the experiments of Mr. Graham on the Transpiration of 

Gases*, and by my own experiments on the Viscosity or Internal Friction of Air and 
other Gases'f.

The result, that the viscosity is independent of the density, follows from the Dyna
mical Theory of Gases, whatever be the law of force between the molecules. I t  was 
deduced by myself$ from the hypothesis of hard elastic molecules, andM . O. E. Meyer § 
has given a more complete investigation on the same hypothesis.

The experimental result, that the viscosity is proportional to the absolute temperature, 
requires us to abandon this hypothesis, which would make it vary as the square root of 
the absolute temperature, and to adopt the hypothesis of a repulsive force inversely as 
the fifth power of the distance between the molecules, which is the only law of force 
which gives the observed result.

Using the foot, the grain, and the second as units, my experiments give for the tem
perature of 62° F ahrenheit, and in dry air,

^=0*0936.
I f  the pressure is 30 inches of mercury, we find, using the same units,

^=477360000 .
Since pT=(A,we find that the modulus of the time of relaxation of rigidity in air of

this pressure and temperature is

5099100000 a  secon<^

This time is exceedingly small, even when compared with the period of vibration of 
the most acute audible sounds; so that even in the theory of sound we may consider the 
motion as steady during this very short time, and use the equations we have already 
found, as has been done by Professor Stokes [|.

Viscosity o f a Mixture o f Gases.
In  a complete mixture of gases, in which there is no diffusion going on, the velocity 

at any point is the same for all the gases.

* Philosophical Transactions, 1846 and 1849.
*t" Proceedings of the Royal Society, February 8, 1866 ; Philosophical Transactions, 1866, p. 249.
+ Philosophical Magazine, January 1860. § Poggendorff’s ‘ Annalen,’ 1865.
|| “ On the effect of the Internal Friction of Fluids on the motion of Pendulums,” Cambridge Transactions, 

vol. ix. (1850), art. 79.
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84 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OR OASES.

Putting
2 / q du dv jr
3\^dx dy ’ (137)

equation (122) becomes
k M0

j?1U =  — S^jAag'ig'x —  + jy| (2 M x A ! +  # ( 3 A 2 +  M  ^1̂ 2' * ( 1 ^ 8 )

Similarly,
k M‘p2U=z — 3Jc2A.2q2q2 jvĵ (2M2Ai +  oMjxAj)^^  ^(3A2—2A1)|^— • (lo9)

Since _p=rjp,+jp3 and q=zqy-\-q2, where p  and q refer to the mixture, we shall have

|*U =  —q— —(fii+ffa)*
where q> is the coefficient of viscosity of the mixture.

I f  we put Sj and s2 for the specific gravities of the two gases, referred to a standard 
gas, in which the values of q> and o a t temperature 80 are jp0 and §n

u)—Po6m Ep?+PpiP2+ 0 p |
r  §ôo * 3A3A1s1Ej9* + H + 3 A2£2s2Gpf’

where \j* is the coefficient of viscosity of the mixture, and

(140)

E = sr ^ ( 2 s 2A ,+ 3 SlA2),

F = 3 A 2(^ s l+ ^ 2s!) - ( 3 A 2- 2 A , ) A ^ ^ ,  

® = Sl (2»i A ,+ Sa*A,),

>■

H  =  3 A 2SjSa { 3^i^a A 2 +  2#2A j}.

(141)

Phis expression is reduced to f/jx when qj2=0, and to y>2 when For other values 
ofjpi and ̂ >2 we require to know the value of #, the coefficient of m utual interference of 
the molecules of the two gases. This might be deduced from the observed values of p 
for mixtures, but a better method is by making experiments on the interdiffusion of the 
two gases. The experiments of Graham on the transpiration of gases, combined with
my experiments on the viscosity of air, give as values of for air, hydrogen, and car
bonic acid,

A i r ...................... Jcx=  4*81 x lO 10,
Hydrogen . . . #1==142-8 X lO 10,
Carbonic acid . . # ,=  3*9 X lO 10. .

. experiments of Graham in 1863, referred to at page 73, on the interdiffusion of 
air and carbonic acid, give the coefficient of mutual interference of these gases,

Air and carbonic acid . 5*2 x lO 10;
and by taking this as the absolute value of #, and assuming that the ratios of the coeffi
cients of interdiffusion given at page 76 are correct, we find

Air and hydrogen . . #=29*8 x  1010.
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF GASES. 85

These numbers are to be regarded as doubtful, as we have supposed air to be a simple 
gas in our calculations, and we do not know the value of between oxygen and nitrogen. 
It is also doubtful whether our method of calculation applies to experiments such as the 
earlier observations of Mr. Graham.

I  have also examined the transpiration-times determined by Gkaham for mixtures of 
hydrogen and carbonic acid, and hydrogen and air, assuming a value of k  roughly, to 
satisfy the experimental results about the middle of the scale. I t  will be seen that the 
calculated numbers for hydrogen and carbonic acid exhibit the peculiarity observed in 
the experiments, that a small addition of hydrogen increases the transpiration-time of 
carbonic acid, and that in both series the times of mixtures depend more on the slower 
than on the quicker gas.

The assumed values of k  in these calculations were—
For hydrogen and carbonic acid # = 1 2 * 5 x 1 0 10,
For hydrogen and air . . . . #=18*8 X lO 10;

and the results of observation and calculation are, for the times of transpiration of 
mixtures of—

Hydrogen and Carbonic acid. Observed. Calculated.
.

Hydrogen and Air. Observed. Calculated.

100 0 •4321 • 4 3 7 5 1 0 0 0 • 4 4 3 4 • 4 3 7 5

97*5 2*5 •4714 • 4 7 5 0 9 5 5 •5282 •5300
95 5 •5157 •5089 9 0 1 0 •5880 •6028
90 10 •5722 •5678 7 5 25 •7488 •7438
75 25 •6786 •6822 50 50 •8179 •8488
50 50 •7339 •7652 25 75 •8790 •8946
25 75 •7535 •7468 10 90 •8880 •8983
10 90 •7521 •7361 5 95 •8960 •8996

0 100 •7470 ‘7272 0 100 •9000 •9010

The numbers given are the ratios of the transpiration-times of mixtures to that of 
oxygen as determined by Mr. Graham, compared with those given by the equation (140) 
deduced from our theory.

Conduction o f  Heat in a Single Medium (y).

The rate of conduction depends on the value of the quantity

where g3, and |£ 2 denote the mean values of those functions of f, £ for all the
molecules in a given element of volume.

As the expressions for the variations of this quantity are somewhat complicated in a 
mixture of media, and as the experimental investigation of the conduction of heat in 
gases is attended with great difficulty, I  shall confine myself here to the discussion of a 
single medium.

Putting
Q=M (w-F|){«2+ v 2+ w 2_{_2<+2^4.2w^-i-/3(|2- F ^ + ^ 2)}, . . . (142)
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and neglecting terms of the forms fy and f  and &  when not multiplied by the large 
coefficient Jc„ we find by equations (75), (77), and (54),

f® f t p + e f + I S P H # s ' * K P + W + P r t — + ? * ) ^ _ 2 ^ * M  . . (143)

The first term of this equation may he neglected, as the rate of conduction will rapidly 
establish itself. The second term contains quantities of four dimensions in ?, j ,  f ,  
whose values will depend on the distribution of velocity among the molecules. I f  the 
distribution of velocity is that which we have proved to exist when the system has no 
external force acting on it and has arrived at its final state, we shall have by equations

86 MR. CLERK MAXWELL ON THE DYNAMICAL THEORY 01' GASES.

(29), (31), (32),

p2 db 
§0 dx

f  = S p . F = 3  ............................ . . . .  (144)

W =  ¥ ■ ¥ =  . . . . .  . . . . .  (145)

¥ ? =  ¥ ■ ¥ -  f  ’ ............................ . . . .  (146)

may be written

: - 3 V A 2 ( 3 { ? + ^ + i H ’ • • • . . . .  (147)

[Addition made December 17, 1866.]

[Final Equilibrium o f
[The left-hand side of equation (147), as sent to the Royal Society, contained a term

2((3—1) t he result of which was to indicate that a column of air, when left to

itself, would assume a temperature varying with the height, and greater above than 
below. The mistake arose from an error* in equation (143). Equation (147), as now 
corrected, shows that the flow of heat depends on the variation of temperature only, and 
not on the direction of the variation of pressure. A vertical column would therefore, 
when in thermal equilibrium, have the same temperature throughout.

W hen I  first attempted this investigation I  overlooked the fact that is not the same 
as | 2. | 2, and so obtained as a result that the temperature diminishes as the height increases 
at a greater rate than it does by expansion when air is carried up in mass. This leads 
at once to a condition of instability, which is inconsistent with the second law of thermo
dynamics. I  wrote to Professor Sir W. Thomson about this result, and the difficulty I  
had met with, but presently discovered one of my mistakes, and arrived at the.conclu
sion that the temperature would increase with the height. This does not lead to mecha- 

* The last term on the left-hand side was not multiplied by /3.
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ME. CLEEK MAXWELL ON THE DYNAMICAL THEOEY OF OASES. 87

nical instability, or to any self-acting currents of air, and I  was in some degree satisfied 
with it. But it is equally inconsistent with the second law of thermodynamics. In  fact, 
if the temperature of any substance, when in thermic equilibrium, is a function of the 
height, that of any other substance must be the same function of the height. For if  not, 
let equal columns of the two substances be enclosed in cylinders impermeable to heat, 
and put in thermal communication at the bottom. If, when in thermal equilibrium, the 
tops of the two columns are at different temperatures, an engine might be worked by 
taking heat from the hotter and giving it up to the cooler, and the refuse heat would 
circulate round the system till it was all converted into mechanical energy, which is in 
contradiction to the second law of thermodynamics.

The result as now given is, that tem perature in gases, when in thermal equili
brium, is independent of height, and it follows from what has been said that tempera
ture is independent of height in all other substances.

I f  we accept this law of temperature as the actual one, and examine our assumptions, 
we shall find that unless | 4= 3 |2. | 2, we should have obtained a different result. Now 
this equation is derived from the law of distribution of velocities to which we were led 
by independent considerations. W e may therefore regard this law of temperature, if  
true, as in some measure a confirmation of the law of distribution of velocities.]

Coefficient o f Conductivity.

I f  C is the coefficient of conductivity of the gas for heat, then the quantity of heat 
which passes through unit of area in unit of time measured as mechanical energy, is

5 |3c  §-■.a 6 Â Ag fQ dx (148)
by equation (147).

Substituting for j3 its value in terms of y by equation (115), and for kx its value in 
terms of p by equation (125), and calling g>0, and 0O the simultaneous pressure, density, 
and temperature of the standard gas, and s the specific gravity of the gas in question, 
we find

p__ 5 p
3(y—1) fJo s (149)

For air we have y —1*409, and at the temperature of melting ice, or 274°*6C. 

above absolute zero, < y /^ = 9 1 8 ’6 feet per second, and at 160,6 C., jU/=0*0936 in foot-

grain-second measure. Hence for air at 16°*6 C the conductivity for heat is
C = 1 1 7 2 .......................................................................(150)

That is to say, a horizontal stratum of air one foot thick, of which the upper surface is 
kept at 17° C., and the lower at 16° C., would in one second transmit through every 
square foot of horizontal surface a quantity of heat the mechanical energy of which is 
equal to that of 2344 grains moving at the rate of one foot per second.
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8 8  * ME. CLEEK MAXW ELL ON THE DYNAM ICAL THEOEY OF GASES.

Principal F orbes * has deduced from his experiments on the conduction of heat in 
bars, that a plate of wrought iron one foot thick, with its opposite surfaces kept 1° C. 
different in temperature, would, when the mean temperature is 25° C., transmit in one 
minute through every square foot of surface as much heat as would raise one cubic foot 
of water 0°*0127 C.

Now the dynamical equivalent in foot-grain-second measure of the heat required to 
raise a cubic foot of water 1° C. is 1*9157 X lO10.

I t  appears from this that iron at 25° C. conducts heat 3525 times better than air at 
16°*6 C.

M. Clausius, from a different form of the theory, and from a different value of 
found that lead should conduct heat 1400 times better than air. Now iron is twice as 
good a conductor of heat as lead, so that this estimate is not far different from that of 
M. Clausius in actual value.

In  reducing the value of the conductivity from one kind of measure to another, we 
must remember that its dimensions are M LT-3, when expressed in absolute dynamical 
measure.

Since all the quantities which enter into the expression for C are constant except 
the conductivity is subject to the same laws as the viscosity, that is, it is independent 
of the pressure, and varies directly as the absolute temperature. The conductivity of 
iron diminishes as the temperature increases.

Also, since y is nearly the same for air, oxygen, hydrogen, and carbonic oxide, the 
conductivity of these gases will vary as the ratio of the viscosity to the specific gravity. 
Oxygen, nitrogen, carbonic oxide, and air will have equal conductivity, while that of 
hydrogen will be about seven times as great.

The value of y for carbonic acid is 1*27, its specific gravity is of oxygen, and its 
viscosity -̂ £ of that of oxygen. The conductivity of carbonic acid for heat is therefore 
about -g- of that of oxygen or of air.
* “ Experimental Inquiry into the Laws of the Conduction of Heat in Bars,” Edinburgh Transactions, 1861-62.
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