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Abstract

The ratio of heat capacity is an absolute necessity for expressing physical properties in various fields
including chemistry, physics, thermal dynamics, fluid dynamics, and acoustics. The ratio of heat
capacity is defined as the heat capacity at constant pressure (Cp) divided by the heat capacity at
constant volume (Cv). James Clerk Maxwell derived a formula for heat capacity ratio in terms of
translational and rotational kinetic energies in his paper “On the Dynamical Theory of Gases”
published in 1867. A similar derivation of the formula of heat capacity ratio is presented in this note.
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Introduction

The ratio of heat capacity is defined as the heat capacity at constant pressure (Cp) divided by the
heat capacity at constant volume (Cv). Based on the equipartition theorem, the ratio of heat capacity
(𝛾) of an ideal gas is related to the number (𝑓) of translational degrees of freedom (DOF) of the
colliding motion of gases as following.

𝛾 = 𝑓+2
𝑓

(1)
where, for a monatomic gas, the number (𝑓) of degrees of freedom (DOF) is 3 and the ratio of heat
capacity (𝛾) is 5

3
. And, for a diatomic gas, the number (𝑓) of degrees of freedom (DOF) is 5 and the

ratio of heat capacity (𝛾) is 7
5
.

James Clerk Maxwell derived a formula for the ratio of heat capacity in terms of the translational
and rotational kinetic energies in “On the Dynamical Theory of Gases” [1] in 1867 as (where 𝛼 is
denoted as 𝛽 in Eq. 114 of Maxwell’s paper)

𝛾 = 3𝛼+2
3𝛼

(2)
where 𝛼 is defined as the ratio of total kinetic energy to the translational kinetic energy as

𝛼 ≡ 𝐸𝑡+𝐸𝑟
𝐸𝑡

(3)
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Where 𝐸𝑡 is the translational kinetic energy, 𝐸𝑟 is the rotational kinetic energy. For monatomic gases
with a negligible rotational kinetic energy, 𝐸𝑟 = 0, 𝛼 = 1, and 𝛾 = 5

3
. For diatomic gases with 𝐸𝑟 =

2
3

𝐸𝑡, 𝛼 = 5
3

, and 𝛾 = 7
5

. A similar derivation of the same mechanical formula of heat capacity ratio is
presented in this note.

The derivation is based on the definition of the ratio of the heat capacity as
𝛾 ≡ 𝐶𝑃

𝐶𝑉
(4)

Where 𝐶𝑃 is the heat capacity at constant pressure, 𝐶𝑉 is the heat capacity at constant volume. The
formulas shown below for the heat capacity at constant pressure (𝐶𝑃) and the heat capacity at
constant volume (𝐶𝑉) will be derived.

𝐶𝑉 = 3
2

𝛼𝑛𝑅 (5)

𝐶𝑃 = 3
2

𝛼𝑛𝑅 + 𝑛𝑅 (6)
where, 𝑛 is the number of moles and 𝑅 is the ideal gas constant. Note that Maxwell used 𝛽 instead 𝛼
with the same meaning in his formulation.

Setup for the Derivation

The three equations below (Eqs.7-9) will be used to derive the formulas for the ratio of heat capacity
(Eq.2), the heat capacity at constant volume (Eq.5), and the heat capacity at constant pressure (Eq.6).
The following three equations are the foundation of the kinetic theory of gases.

𝐸𝑡 = 1
2

𝑛𝑁𝐴𝑚𝑣2 (7)

𝐸𝑟 = 1
2

𝑛𝑁𝐴𝐼𝜔2 (8)

𝑃𝑉 = 1
3

𝑛𝑁𝐴𝑚𝑣2 (9)

where 𝐸𝑡 is the translational kinetic energy, 𝐸𝑟 is the rotational (spin) kinetic energy, 𝑛 is the number
of moles, 𝑁𝐴 is Avogadro’s number, 𝑚 is the mass of one molecule, 𝐼 is the mass moment of inertia
of one molecule, 𝑣 is the translational RMS velocity, 𝜔 is the angular RMS velocity, 𝑃 is the
pressure, 𝑉 is the volume. Combining Eq.7 and Eq.9, the translational kinetic energy (𝐸𝑡) can be
related to the pressure (𝑃) as

𝐸𝑡 = 3
2

𝑃𝑉 (10)
The definition of the heat capacity at constant volume (𝐶𝑉) and the heat capacity at constant pressure
(𝐶𝑃) are defined as the heat input (∆𝑄) per unit temperature increase (∆𝑇) at constant volume and at
constant pressure respectively as

𝐶𝑉 ≡ ∆𝑄
∆𝑇

ቚ
𝑉

(11)

𝐶𝑃 ≡ ∆𝑄
∆𝑇

ቚ
𝑃

(12)
Temperature (T) is not presented in the formula (Eqs. 4-6) of heat capacity ratio, but it is used for the
definition of heat capacity at constant volume (𝐶𝑉) and the heat capacity at constant pressure (𝐶𝑃) as
in the two equations above. To bring temperature (T) into the derivation, the general gas equation is
used to relate temperature to pressure as

𝑃𝑉 = 𝑛𝑅𝑇 (13)
where 𝑇 is temperature, 𝑛 is number of moles, 𝑅 is the ideal gas constant.
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A new variable 𝛼 is introduced as the ratio of total kinetic energy (𝐸𝑡 + 𝐸𝑟) to the translational
kinetic energy (𝐸𝑡) as

𝛼 ≡ 𝐸𝑡+𝐸𝑟
𝐸𝑡

(14)
This new variable 𝛼 will be used to represent total kinetic energy (𝐸𝑡 + 𝐸𝑟) with the translational
kinetic energy (𝐸𝑡) as: 𝐸𝑡 + 𝐸𝑟 = 𝛼𝐸𝑡.

Derivation of the Ratio of Heat Capacity

The ratio of heat capacity (𝛾) is derived from its definition as 𝐶𝑝 divided by 𝐶𝑣 as shown in Eq.4.
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increase
∆ 𝐸𝑡 + 𝐸𝑟
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𝑃∆𝑉

Setup for the heat capacity for constant pressure (𝐶𝑃)
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𝐸𝑟: Rotational KE

Setup for the heat capacity for constant volume (𝐶𝑉)

                                        Figure 1. Setup for the Heat Capacities

For the heat capacity at constant volume (𝐶𝑉) in an adiabatic process, all heat input (∆𝑄) transfers to
the total kinetic energy increment, ∆(𝐸𝑡 + 𝐸𝑟) which is a combination of the translational kinetic
energy increment ∆𝐸𝑡 and the rotational kinetic energy increment ∆𝐸𝑟 as

∆𝑄 = ∆(𝐸𝑡 + 𝐸𝑟) (15)
Substituting the equation above (Eq.15) into the definition of heat capacity at constant volume
(Eq.11) gives

𝐶𝑉 ≡ ∆𝑄
∆𝑇

ቚ
𝑉

= ∆(𝐸𝑡+𝐸𝑟)
∆𝑇

(16)

For the heat capacity at constant pressure (𝐶𝑃) in an adiabatic process, the heat input (∆𝑄) transfers
to the total kinetic energy increment, ∆(𝐸𝑡 + 𝐸𝑟) and the work done (𝑃∆𝑉) in the system. Note that,
since P is constant, 𝑃∆𝑉 can be replaced by ∆(𝑃𝑉).

∆𝑄 = ∆(𝐸𝑡 + 𝐸𝑟) + 𝑃∆𝑉 = ∆(𝐸𝑡 + 𝐸𝑟) + ∆(𝑃𝑉) (17)
Substituting the equation above (Eq.17) into the definition of heat capacity at constant pressure
(Eq.12) gives

𝐶𝑃 ≡ ∆𝑄
∆𝑇

ቚ
𝑃

= ∆(𝐸𝑡+𝐸𝑟)+∆(𝑃𝑉)
∆𝑇

(18)

With the new variable (𝛼), the total kinetic energy (𝐸𝑡 + 𝐸𝑟) can be replaced by the translational
kinetic energy (𝛼𝐸𝑡). Following this approach, substituting Eq.14 into Eq.16 and Eq.18 gives

𝐶𝑉 ≡ ∆𝑄
∆𝑇

ቚ
𝑉

= ∆(𝐸𝑡+𝐸𝑟)
∆𝑇

= ∆(𝛼𝐸𝑡)
∆𝑇

(19)

𝐶𝑃 ≡ ∆𝑄
∆𝑇

ቚ
𝑃

= ∆(𝐸𝑡+𝐸𝑟)+∆(𝑃𝑉)
∆𝑇

= ∆(𝛼𝐸𝑡)+∆(𝑃𝑉)
∆𝑇

(20)
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Substituting 𝐶𝑉 and 𝐶𝑃 (Eq.19 and Eq.20 respectively) into the definition of the ratio of heat capacity
(Eq.4) and canceling out temperature (∆𝑇) yields

𝛾 ≡ 𝐶𝑃
𝐶𝑉

=
∆(𝛼𝐸𝑡)+∆(𝑃𝑉)

∆𝑇
∆(𝛼𝐸𝑡)

∆𝑇

= ∆(𝛼𝐸𝑡)+∆(𝑃𝑉)
∆(𝛼𝐸𝑡)

(21)

Next, replacing the translational kinetic energy (𝐸𝑡) with 3
2

𝑃𝑉 by substituting Eq.10 into Eq.21 gives
the formula of the ratio of heat capacity as

𝛾 ≡ 𝐶𝑃
𝐶𝑉

= ∆(𝛼𝐸𝑡)+∆(𝑃𝑉)
∆(𝛼𝐸𝑡)

=
∆ቀ𝛼3

2𝑃𝑉ቁ+∆(𝑃𝑉)

∆ቀ𝛼3
2𝑃𝑉ቁ

=
𝛼3

2∆(𝑃𝑉)+∆(𝑃𝑉)

𝛼3
2∆(𝑃𝑉)

= 3𝛼+2
3𝛼

(22)

Note that 𝛼, as defined in Eq. 3, is the ratio of “total kinetic energy” to “translational kinetic energy”
and should be a constant assuming that this ratio is not affected by pressure or volume change. For
monatomic gases with a negligible rotational kinetic energy, 𝐸𝑟 = 0, 𝛼 = 1, and 𝛾 = 5

3
. For

diatomic gases with 𝐸𝑟 = 2
3

𝐸𝑡, 𝛼 = 5
3

, and 𝛾 = 7
5

. The ratio of heat capacity calculated with the
proposed formula match the conventional values for both monatomic and diatomic gases. This
simple formula is more comprehensible than the conventional formula (Eq.1) because this formula
provides information about the kinetic properties of gases and allows us to better model the dynamic
behavior of molecules.

𝐸𝑟 = 1
2

𝑛𝑁𝐴𝐼𝜔2

𝐸𝑡 = 1
2 𝑛𝑁𝐴𝑚𝑣2

𝑃𝑉 = 1
3

𝑛𝑁𝐴𝑚𝑣2 

𝛼 ≡
𝐸𝑡 + 𝐸𝑟

𝐸𝑡

𝐶𝑃 ≡ ∆𝑄
∆𝑇

ቚ
𝑃

= ∆ 𝐸𝑡+𝐸𝑟 +𝑃∆𝑉
∆𝑇

= ∆ 𝛼𝐸𝑡 +∆ 𝑃𝑉
∆𝑇

𝐶𝑉 ≡ ∆𝑄
∆𝑇

ቚ
𝑉

 = ∆ 𝐸𝑡+𝐸𝑟
∆𝑇

= ∆ 𝛼𝐸𝑡
∆𝑇

𝐸𝑡 = 3
2

𝑃𝑉

𝐸𝑡 + 𝐸𝑟 = 𝛼𝐸𝑡

𝛾 ≡ 𝐶𝑃
𝐶𝑉

=
∆ 𝛼𝐸𝑡 +∆ 𝑃𝑉

∆𝑇
∆ 𝛼𝐸𝑡

∆𝑇

= ∆ 𝛼𝐸𝑡 +∆ 𝑃𝑉
∆ 𝛼𝐸𝑡

=
∆ 𝛼3

2𝑃𝑉 +∆ 𝑃𝑉

∆ 𝛼3
2𝑃𝑉 

= 3𝛼+2
3𝛼 

                                       Figure 2. Derivation of the Ratio of Heat Capacity

In addition, heat capacity at constant volume (𝐶𝑉) can be formulated by replacing translational
kinetic energy (𝐸𝑡) with (3

2
𝑛𝑅𝑇) by substituting Eqs.10 and 13 into Eq.19 to get

𝐶𝑉 ≡ ∆𝑄
∆𝑇

ቚ
𝑉

= ∆(𝐸𝑡+𝐸𝑟)
∆𝑇

= ∆(𝛼𝐸𝑡)
∆𝑇

=
∆ቀ𝛼3

2𝑛𝑅𝑇 ቁ

∆𝑇
=

𝛼3
2𝑛𝑅∆(𝑇 )

∆𝑇
= 3𝛼

2
𝑛𝑅 (23)

Also, heat capacity at constant pressure (𝐶𝑃) can be formulated by replacing translational kinetic
energy (𝐸𝑡) with (3

2
𝑛𝑅𝑇) by substituting Eqs.10 and 13 into Eq.20 and then replacing 𝑃𝑉 with 𝑛𝑅𝑇

(Eq.13) to get

𝐶𝑃 ≡ ∆𝑄
∆𝑇

ቚ
𝑃

= ∆(𝐸𝑡+𝐸𝑟)+∆(𝑃𝑉)
∆𝑇

= ∆(𝛼𝐸𝑡)+∆(𝑃𝑉)
∆𝑇

=
∆ቀ𝛼3

2𝑛𝑅𝑇 ቁ+∆(𝑛𝑅𝑇)

∆𝑇
= 3𝛼+2

2
𝑛𝑅 (24)

Note that both heat capacity at constant volume (𝐶𝑉) and heat capacity at constant pressure (𝐶𝑃) are
functions of the new variable 𝛼 which was defined in Eq.3. For monatomic gases with a negligible
rotational kinetic energy, 𝐸𝑟 = 0, 𝛼 = 1, 𝐶𝑉 = 3

2
𝑛𝑅, and 𝐶𝑃 = 5

2
𝑛𝑅. For diatomic gases with 𝐸𝑟 =
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2
3

𝐸𝑡, 𝛼 = 5
3

, and 𝐶𝑉 = 5
2

𝑛𝑅, and 𝐶𝑃 = 7
2

𝑛𝑅. The values of both 𝐶𝑉 and 𝐶𝑃  calculated with the
proposed formulas match the conventional values for monatomic and diatomic gases.

𝐸𝑟 = 1
2

𝑛𝑁𝐴𝐼𝜔2

𝐸𝑡 = 1
2

𝑛𝑁𝐴𝑚𝑣2

𝑃𝑉 = 1
3

𝑛𝑁𝐴𝑚𝑣2 

𝑃𝑉 = 𝑛𝑅𝑇 

𝛼 ≡
𝐸𝑡 + 𝐸𝑟

𝐸𝑡

𝐶𝑃 ≡ ∆𝑄
∆𝑇

ቚ
𝑃

= ∆ 𝐸𝑡+𝐸𝑟 +𝑃∆𝑉
∆𝑇

= ∆ 𝛼𝐸𝑡 +∆ 𝑃𝑉
∆𝑇

=
∆ 𝛼3

2𝑛𝑅𝑇 +∆ 𝑛𝑅𝑇

∆𝑇
= 3𝛼+2

2
𝑛𝑅

𝐶𝑉 ≡ ∆𝑄
∆𝑇

ቚ
𝑉

 = ∆ 𝐸𝑡+𝐸𝑟
∆𝑇

= ∆ 𝛼𝐸𝑡
∆𝑇

=
∆ 𝛼3

2𝑛𝑅𝑇 

∆𝑇
= 3𝛼

2
𝑛𝑅

𝐸𝑡 = 3
2

𝑃𝑉 = 3
2

𝑛𝑅𝑇

𝐸𝑡 + 𝐸𝑟 = 𝛼𝐸𝑡

                                          Figure 3. The Derivation of Heat Capacities

It is worth noting that the new formula (Eq.2) remains valid even when the elastic strain energy (𝐸𝑠)
caused by internal relative vibrations between atoms is considered. It can be shown that the
derivation, Eqs.14-22, remains valid even after the total kinetic energy (𝐸𝑡 + 𝐸𝑟) in Eq.15 is replaced
by a combination of the total kinetic energy and the elastic strain energy (𝐸𝑡 + 𝐸𝑟 + 𝐸𝑠). Also note
that for low temperatures, vibrational energies are negligible when comparing to kinetic energies.

Conclusion

James Clerk Maxwell derived the mechanical formula of heat capacity ratio as a function of the
translational and rotational kinetic energies in his paper “On the Dynamical Theory of Gases”
published in 1867 [1]. A similar derivation of a Maxwell’s mechanical formula for the ratio of heat
capacity is presented in this note. The small internal vibrational energy between atoms is neglected
in the formula. This mechanical formula not only provides a comprehensive explanation of how the
kinetic energy affect the ratio of the heat capacity but also allows for the determination of the ratio of
heat capacity from the mechanic analysis such as the numerical collision simulation of particles.
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